

KS4 Curriculum Map – Physics:

Tonic	Substantive Knowledge	Disciplinary Knowledge (Skills)	Assessment Opportunities
Торіс	This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	This is the action taken within a particular topic in order to gain substantive knowledge.	What assessments will be used to measure student progress?
Conservation and Dissipation of Energy	 State all energy stores, Describe how energy can be transferred, Define "Conservation of Energy", Define "Closed System" Define "Work Done", Define "GPE" and give factors that affect it, Give factors that affect kinetic and elastic energy, Define "Useful" and "Wasted" energy Define "Efficiency", Identify where our electricity comes from, Write energy transfers for common electrical appliances, Define "Power" 	 Write energy transfers Write energy transfers and apply conservation of energy Use the formulae KE=1/2mv² and E=1/2ke² to solve problems Use the formula GPE=mgh to solve problems Use P=E/t to calculate power, Link power to useful and wasted energy Use the formula W=Fs to calculate work Explain how work is done to overcome friction Use the formula to calculate efficiency Suggest how machines could be made more efficient State what happens to wasted energy Discuss whether energy is ever really "lost" Identify useful and waste energy types in electrical transfers 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Interactive kerboodle resources:

Energy Transfer by Heating	 Define "Conductors" and "Insulators" and give examples, State and explain what factors affect the rate of conduction Define "Infrared Radiation" Explain what is meant by black body radiation State factors that affect the rate of infrared transfer Explain how the rate of infrared transfer affects temperature, Define "Specific Heat Capacity" State factors that affect the rate of temperature change of an object State ways in which homes are heated 	 Use the particle model to explain how conduction works Model how global warming is caused in terms of infrared radiation Use the formula E=mcθ to solve problems Identify methods to reduce heat loss explain how each method works in terms of conduction, convection, and radiation 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Investigative Practical Work – Specific Heat Capacity Home Heating Project Interactive Kerboodle Resources:
Energy Resources	 Identify which fuels are used to generate electricity, Describe how nuclear powerplants work Describe how a power plant produces electricity, Identify different types of power plant, Define "Renewable Energy" Give examples of renewable sources of energy, Identify the main causes of environmental concern when producing electricity, Define "Supply" and "Demand" 	 Compare uses of different fuels, Identify advantages and disadvantages of power plants Identify advantages and disadvantages of renewable sources of energy Compare power stations to one another in terms of advantages and disadvantages for the environment Identify how best to use different power stations to adapt to changes in demand 	 Kerboodle Review Questions Summative End of Unit Test Power Plant Project Presentations Interactive Kerboodle Resources:
Electricity	 Define suppy and Demand Define an electric field State how charges affect one another, Describe how a static charge is formed and discharged Define what is meant by current Define what is meant by potential difference Define "Series Circuit" State how current and potential difference changes in series circuits 	 Drawing circuits and symbols Building circuits Give the relationship between current and charge Use the formula Q=It to solve problems Measure potential difference in a circuit Perform a practical to investigate how resistance changes with length Sketch IV graphs for an ohmic resistor, a filament lamp, and a diode 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Investigative Practical Work – Circuits Circuit Building Simulation Kits (PhET) Interactive Kerboodle Resources:

	 State and explain what happens when you place resistors in series, Define "Parallel Circuits" State what happens to current and potential difference in parallel circuits State and explain what happens to resistors in parallel 	 Explain the shapes of these graphs, Calculate the resistance of the components from the graphs Perform required practical to test the current and pd of a component Perform a practical to test resistors in series Perform a practical to test resistors in parallel 	
Mains Electricity	 Define AC and DC State what is meant by the live wire and neutral wire in mains electricity Describe the national grid Describe the parts of a UK plug and explain the materials used Describe energy transfers through a resistor Describe the energy transfer in a circuit 	 Describe how to use an oscilloscope to measure frequency and peak pd Identify the wires in a UK cable Explain the function of the earth pin Calculate the current drawn by a device from its power rating, Be able to correctly identify which fuse should be used in a device from its power rating Use the formula Q=It and P=IV to solve problems Relate energy transfer to potential difference using E=QV Calculate the total energy supplied using P=IV and E=Pt Calculate the useful and wasted energy from an appliance's efficiency Compare different appliances based on their efficiencies 	 Kerboodle Review Questions Summative End of Unit Test Use of an oscilloscope Practice Calculations
Molecules and Matter	 Define density including units State properties of solids, liquids and gases, particle arrangement of solids, liquids and gases Define melting and boiling point Describe requirements to melt solids or boil liquids Explain how temperature changes affect internal energy, explain properties of solid, liquid and gas 	 Measure density of solids and liquids Use density equation to calculate mass or volume Determine from density whether object will float Explain why gases are less dense Explain why mass stays the same after state changes Explain difference between boiling and evaporation 	 Kerboodle Review Questions Summative End of Unit Test Investigative Practical Work – Latent Heat and Density Practice Calculations Interactive Kerboodle Resources:

	 heating Define latent heat, specific latent heat of fusion and of vaporisation Explain how gases exert pressure on a surface 	 Determine melting or boiling point from temp/time graph Explain gas pressure in terms of particles Use specific latent heat in calculations Measure specific latent heat of ice and water Relate gas pressure to temperature Describe observable evidence of random motion Relate changes in gas pressure to changes in volume Explain why changing gas volume changes pressure Use pV = constant in calculations Explain why gas temperature increases when compressed rapidly describe how alpha/beta emission changes nucleus 	
Radioactivity	 Define isotope State how far each type of radiation travels in air State how materials absorb alpha/beta/gamma radiation State ionising power of radiation, Define half life and count rate Describe effect of radioactive decay on count rate Describe use of radioisotopes in medicine Define nuclear fission Define chain reaction Define nuclear fusion Describe radon gas 	 Represent alpha/beta emission as a diagram Explain why ionising radiation is dangerous Calculate count rate after given number of half lives Choose appropriate radioisotope for a job, Explain types of nuclear radiation used in medical imaging Explain how to use radioactivity to destroy cancer cells Describe difference between spontaneous and induced fission Explain how chain reaction is controlled in a reactor Describe how nuclei can be fused Explain where the sun's energy comes from Explain why fusion reactors are difficult to make Discuss how safe nuclear reactors are 	 Kerboodle Review Questions Summative End of Unit Test Interpret/plot half-life graphs Practice Calculations Interactive Kerboodle Resources:

Forces in Balance	 Define "scalar" and "vector" Give examples of scalars and vectors, State Newton's Laws of Motion, Define "Resultant Force" State what happens to an object when resultant force is zero or not Define moment, lever, effort, and load Define "moment" and give examples of levers Identify when gears/levers change the force or moment of a system Define "centre of mass" Define "counterweight" 	 Explain: why radon gas is dangerous, why nuclear waste is dangerous, what happens to nuclear waste Find a resultant vector for parallel and perpendicular vectors Use Newton's laws to explain motion Use F=ma formula to solve problems Draw a free body diagram Calculate resultant force Label a diagram of a lever State the formula for moments and use it to solve problems involving levers and gears Use the formula to calculate increases/decreases in forces/moments Describe and carry out a practical to determine the centre of mass of a 2D shape Give examples of practical uses of moments in everyday life Use the idea of centre of mass and moments to explain stability/toppling over Draw a parallelogram of forces Use the parallelogram of forces to calculate a resultant force Find vertical and horizontal components of forces at an angle Combine two vectors that are not at right angles Use SOHCAHTOA and graphical methods to find solutions to vector problems 	 Kerboodle Review Questions Summative End of Unit Test Investigative Practical Work – Centre of Mass Practice Calculations Interactive Kerboodle Resources:
Motion	 Define acceleration Define displacement Define distance Define speed Define velocity 	 Plot and distance-time graphs Describe an objects motion from its motion graph Calculate speed from the graph Use the formula a=(v-u)t/2 to solve problems Explain the meaning of negative acceleration 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Graph plotting/interpreting Interactive Kerboodle Resources:

	 Relate acceleration to force and mass Define inertia State difference between mass and weight 	 Plot speed-time graphs Describe an object's motion from its motion graph Plot a speed-time graph from a distance-time graph Calculate acceleration and distance travelled from the graph Interpret motion graphs to find meaningful values from gradients or areas Use motion time graphs to accurately describe an object's journey Making reference to key calculated values Calculate resultant force from acceleration and mass 	
Forces and Motion	 Describe motion of a falling object Define terminal velocity Describe resultant force for terminal velocity State forces opposing forward motion of a vehicle Define momentum Describe conservation of momentum Describe momentum of objects pushing each other apart State factors that affect impact force, Define elasticity Describe how spring extension relates to force applies Define limit of proportionality 	 Describe and explain factors affecting stopping distance Calculate momentum including units Solve problems involving the conservation of momentum Describe how impact time affects force Explain why increasing the impact time reduces the force Explain: why helmets and cushioned surfaces reduce impact forces, why seatbelts and airbags reduce force in an accident, how side impact bars and crumple zones work; work out if a car in a collision was speeding Measure extension of a stretched object, 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Investigative Practical Work: Hooke's Law Interactive Kerboodle Resources:
Forces and Pressure	 Define pressure State unit of pressure, Explain how liquid pressure increases with depth Relate atmospheric density to altitude, Define upthrust in a fluid, explain causes of upthrust 	 Use P=F/A to solve problems Explain significance of contact area for pressure Explain why liquid pressure is constant along a horizontal line Describe factors affecting liquid pressure 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Interactive Kerboodle resources:

		 Calculate pressure caused by a liquid column Explain why atmospheric pressure exists and changes with altitude calculate force on flat objects due to pressure difference Explain factors affecting pressure in fluid Explain whether objects float or sink Identify types of waves 	
Wave Properties	 Give examples of uses of waves Describe reflection and refraction State when reflection and refraction of plane waves will happen Describe sound waves Describe how the loudness and pitch of a soundwave are affected State limits of human hearing Define ultrasound Describe how ultrasound is used in SONAR and medicine Define seismic waves 	 Identify types of waves Label key features of waves Relate wave speed to frequency and wavelength Use the formula v=fλ Explain why reflection and refraction occur Investigate waves propagating on a string Identify sound waves from oscilloscope traces Give advantages of using ultrasound Identify different types and state how they are produced, explain how seismic waves tell us about the structure of the earth 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Investigative Practical Work: Waves on a String Interactive Kerboodle Resources:
Electromagnetic Waves	 Identify parts of the EM spectrum Identify wavelengths of visible light Define white light Identify different radio waves for different purposes Describe fibre optics Define ionising radiation State why some EM waves are dangerous State which materials will absorb X-Rays 	 Calculate the wavelength or frequency of EM waves Identify uses for microwaves, radio waves, and infrared Complete IR required practical Explain which waves are used for satellite communications Explain what a carrier wave is Identify uses of UV, Gamma, and X-Rays Identify medical uses of X-Rays, 	 Kerboodle Review Questions Summative End of Unit Test Investigative Practical Work: Infrared Radiation Practice Calculations Interactive Kerboodle resources:
Light	 State the law of reflection for light waves, State where refraction of light waves happens Explain the difference between colours of light and state the primary and secondary colours 	 Draw and label a reflection diagram Explain the difference between diffuse and specular reflection Use diagrams to determine an image formed in a plane mirror Draw and label diagrams of refraction 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Graphical Scaled Diagrams Interactive Kerboodle Resources:

	Define convex and concave lenses	 Explain why refraction happens Explain what determines the colour of a surface Explain how light filters work Draw diagrams of lenses Calculate the magnification of a lens Draw ray diagrams for images formed by lenses State and explain the nature of the images formed from lenses when the object is at various distances from the lens 	
Electromagnetism	 State the force rule for magnets near each other Explain induced magnetism State how the strength and direction of the field can be varied State devices that use electromagnets Define the motor effect Label a diagram of a simple motor and explain how it works Define the generator effect Explain what is meant by induced potential Describe a transformer and what it does State where transformers work Use the transformer formula to solve problems Explain why high voltages are used in overhead power cables 	 Draw field lines around a fixed magnet Draw magnetic field lines around a current carrying wire Define an electromagnet and label a diagram Explain how electromagnets allow their devices to work Use the Left Hand Rule to determine the force on a wire in a magnetic field Use induced potential to explain how current can be induced in a wire and state what affects its size and direction Label a diagram of a generator and explain how it works Relate the ratio of coil numbers to ratio of potential differences Discuss transformer efficiency 	 Kerboodle Review Questions Summative End of Unit Test Practice Calculations Interactive Kerboodle Resources:
Space	 Describe the solar system Describe a protostar Describe energy transfers in the sun Identify stages of a star's life and describe what is happening at each stage Describe an orbit and state the forces involved 	 Draw a diagram of the solar system Explain what is meant by a star's stability Explain why some stars have different endings to their lives Explain why a satellite needs to move at a particular speed Describe and explain Red Shift 	 Kerboodle Review Questions Summative End of Unit Test Interactive Kerboodle Resources:

 Describe the direction of forces on a body	 Explain how red shift is used as evidence for
in orbit Describe how the velocity of a satellite	an expanding universe Explain how the evidence leads to the
changes Describe and explain Red Shift Relate red shift to an object's speed Describe the Big Bang Theory State evidence for the big bang such as Red	conclusion of the big bang Discuss what might possibly happen to the
Shift and CMBR	universe in the future