

KS5 Curriculum Map – Computer Science:

Topic

Substantive Knowledge

This is the specific, factual content for
the topic, which should be connected

into a careful sequence of learning.

Disciplinary Knowledge
(Skills)

This is the action taken within a
particular topic in order to gain

substantive knowledge.

Assessment
Opportunities

What assessments will be used
to measure student progress?

Programming
Techniques

• Programming Basics

• Selection

• Iteration

• Subroutines

• Recursion
Object-Oriented Programming

• use arithmetic operations and Boolean
operations NOT, AND and OR

• use functions and library subroutines
including random number generation

• know how to define and call a subroutine
(procedure or function) with parameters

• construct algorithms using one-dimensional
arrays

• describe what is meant by recursion

• define the OOP terms class, object, method,
attribute, inheritance, encapsulation and
polymorphism

• draw an inheritance diagram

• describe features of an IDE which are useful
in developing and debugging a program

• write a pseudocode solution for a problem
involving iteration and selection (branching)

• use structured programming techniques
and write their own subroutines with
parameters

• construct algorithms using two-dimensional
arrays

• use local and global variables in subroutines

• trace through a recursive algorithm

• Students will be assessed in
their construction of classes and
sub-classes in Python.

• While students will develop
classes in Python, they will
develop their understanding of
constructor methods and how
to interpret them in
Pseudocode (OCR Reference
Language).

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• End of unit topic test.

• compare iterative and recursive algorithms
for solving a problem

• complete given pseudocode for an object-
oriented program

• write complex algorithms involving data
structures, subroutines and file-handling

• interpret complex algorithms and
determine the output

• explain why using local variables makes a
program easier to maintain

• distinguish between passing parameters by
value and by reference

• write a recursive algorithm to solve a
problem

• use object-oriented programming
techniques to solve problems

Components of a
computer

• Processor components

• Processor performance

• Types of processor

• Input devices

• Output devices

• Storage devices

• Understand the functions of the following
components: ALU, CU, PC, ACC, MAR, MDR,
CIR

• How data is sent between components via
the address and data bus

• The Fetch-Decode-Execute Cycle; including
its effects on registers

• The factors affecting the performance of
the CPU: clock speed, number of cores,
cache

• How pipelining works

• The difference between Von Neuman and
Harvard architecture

• The difference between CISC and RISC and
how it is now impacting the market

• How multicore and parallel systems work

• GPUs and how they differ to CPU

• Different types of technology used in
secondary storage and their advantages
and disadvantages

• RAM, ROM and virtual storage and how
swapping takes place

• Students will be assessed on
their understanding of the FDE
via the LMC

• Complete a range of in class
activities to identify whether
parallel processing or multicore
works better

• Complete tasks in the OCR text
book

• Complete a range of
homeworks to consolidate
student’s knowledge and
understanding

• End of unit test

Computational
Thinking

• Thinking Abstractly

• Thinking Ahead

• Thinking Procedurally

• Thinking Logically, Thinking Concurrently

• Problem Recognition

• Problem Solving

• explain the differences between an
abstraction and reality

• describe the need for reusable program
components

• identify the inputs and outputs for a given
situation

• interpret simple algorithms to describe
their purpose

• give an example of how caching is used in a
computer system

• determine the preconditions for devising a
solution to a problem

• describe the nature, benefits and
drawbacks of caching

• identify the components of a problem and
its solution

• determine the order of steps needed to
solve a problem

• determine the logical conditions that affect
the outcome of a decision

• describe the nature of and need for
abstraction

• devise an abstract model for a variety of
situations

• design algorithms to solve complex
problems

• hand trace a complex algorithm to say what
it does

• determine the parts of a problem that can
be executed concurrently

• outline the benefits and trade-offs that
might result from concurrent processing in
a particular situation

• apply techniques of backtracking, data
mining, heuristics, performance modelling,
pipelining and visualisation to the solution
of problems

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• End of Unit Test

•

Data Types

• Primitive data types, binary and
hexadecimal

• ASCII and Unicode

• Binary arithmetic

• Floating point arithmetic

• Bitwise manipulation and masks

• Students will be able to convert to different
number systems (binary, hexadecimal and
denary)

• Students are able to represent negative
numbers using sign and magnitude and
two’s complement

• Perform binary addition and subtraction

• Representation of normalisation of floating-
point numbers

• Perform floating point arithmetic

• Apply bitwise manipulation and masks,
combining with AND, OR and XOR

• How to represent characters sets (ASCII and
UNICODE)

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• End of unit test to test students
understanding of the whole
topic

Software
Development

• Systems Analysis Methods

• Writing and Following Algorithms

• Programming Paradigms

• list the stages in the waterfall lifecycle
model

• name two other systems development
models

• name and describe different types of
testing

• write a pseudocode algorithm to solve a
simple problem

• use a trace table to trace through an
algorithm

• interpret simple algorithms to describe
their purpose

• list two features of a good algorithm

• Define the term “programming paradigm”
and give an example of two paradigms

• define the terms object, class, method,
attribute, inheritance

• draw a simple inheritance diagram for a set
of classes in an object-oriented approach

• describe agile methodologies, extreme
programming, the spiral model and rapid
application development

• write pseudocode algorithms to solve
problems

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• Students will differentiate
between different Systems
Analysis methods and refer to
these in their programming
project.

• End of Unit test

•

• describe different programming paradigms,
including procedural, and object-oriented
paradigms

• explain the terms encapsulation and
polymorphism

• distinguish between immediate, direct and
indirect addressing modes in assembly
language

• describe the relative merits and drawbacks
of different software development
methodologies and when they might be
used

• design algorithms to solve complex
problems

• explain why different programming
paradigms are suited to different
applications and the advantages of each

• describe and use four methods of
addressing memory: immediate, direct,
indirect and indexed

Boolean Algebra

• Logic gates and truth tables

• Simplifying Boolean expressions

• Karnaugh maps

• Adders and D-type flip-flops

• Define problems using Boolean logic

• Manipulate Boolean expressions, including
the use of Karnaugh maps to simplify
Boolean expressions

• Use the following rules to derive or simplify
statements in Boolean algebra: De
Morgan’s Laws, distribution, association,
commutation, double negation

• Using logic gate diagrams and truth tables

• Understand the logic for half and full adders

• Apply problem solving skills to
create logic gate circuits for real
world scenarios

• Worksheets to tests student’s
ability to simplify Boolean
expressions

• Create half and full adders using
logic.ly and breadboards in
lessons

• Homeworks to consolidate
students understanding

• End of unit topic test

Data structures

• Arrays, tuples and records

• Queues

• Lists and linked lists

• Stacks

• Hash tables

• Graphs

• Arrays (of up to 3 dimensions), records,
lists, tuples – how to create and iterate
through in a high-level programming
language

• Create a linked-list and how to insert,
delete from a linked list

• Students will be assessed in
Python by completing a range
of programming tasks to create
the data structures using OOP

• Worksheets to test student’s
knowledge and understanding

• Trees • Graph (directed and undirected) and how to
traverse through a graph

• Implementation and operations of a stack
and how they are used in functions

• Trees and the key concepts and how to
perform a range of traversals, binary search
tree,

• Hash tables and hashing algorithms with
the use of dictionaries

• Homeworks given for each data
structure

• End of unit topic test

Exchanging Data

• Compression and Encryption

• Database Concepts

• Relational Databases and Normalisation

• Introduction to SQL

• Defining and Updating Tables using SQL

• Transaction Processing

• explain the difference between lossy and
lossless compression and list advantages
and disadvantages of each

• define the terms relational database,
foreign key, secondary key, entity

• draw a simple entity relationship diagram
involving three or four entities

• state the properties of a database in Third
Normal Form

• interpret a simple SQL statement

• list methods of capturing data for input to a
database

• explain the differences between
asymmetric and symmetric encryption

• explain the use of hashing to encrypt data

• draw a complex entity relationship diagram
involving several entities

• normalise a database to third normal form

• list the advantages of a normalised
database

• describe methods of capturing, selecting,
managing and exchanging data

• Describe what is meant by redundancy

• Explain what is meant by referential
integrity

• use SQL to modify a database

• describe what is meant by transaction
processing and ACID

• Students will create, interpret
and explain SQL statements.

• Students will reduce the
duplication of data and use
normalisation to allow for
consistent data across a large
database.

• Students will use SQL to create,
modify and delete
data/databases

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• End of unit test

Algorithms

• Analysis and design of algorithms

• Searching algorithms

• Bubble sort and insertion sort

• Merge sort and quick sort

• Graph traversal algorithms

• Optimisation algorithms

• Analysis and design of algorithms for a
given situation

• The suitability of different algorithms for a
given task and data set, in terms of
execution time and space

• Measures and methods to determine the
efficiency of different algorithms, Big O
notation (constant, linear, polynomial,
exponential and logarithmic complexity)

• Comparison of the complexity of algorithms

• Algorithms for the main data structures,
(stacks, queues, trees, linked lists, depth-
first (post-order) and breadth-first traversal
of trees)

• Standard algorithms (bubble sort, insertion
sort, merge sort, quick sort, Dijkstra’s
shortest path algorithm, A* algorithm,
binary search and linear search)

• Programming tasks to create
the algorithms previously
mentioned

• Trace tables to be able to trace
through algorithms

• Worksheets to tests student’s
ability to work out the time
complexity

• Worksheets to assess student’s
ability to describe algorithms

• End of unit test

Networks

• The Structure of the Internet

• Internet Communication

• HTML & CSS

• JavaScript

• Search Engine Indexing

• Client-Server & Peer-to-Peer

• State the importance of protocols and
standards

• Describe the structure of the Internet

• Explain the protocols used within the
TCP/IP stack

• Demonstrate DNS in action using an IP
address within a web browser

• Describe and identify examples of LANs and
WANs

• Explain packet switching

• Provide examples of network threats and
state methods to overcome these

• Explain the function of a firewall

• State the functions of a proxy server

• Create a basic webpage using HTML and
some CSS

• Use JavaScript to make web form elements
interactive and add validation

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• Students will be assessed on
their ability to create interactive
and high-functioning web pages
using HTML, CSS and JavaScript

• End of Unit Test

• Describe the characteristics of the
PageRank algorithm and state the factors
that influence page ranking

• Describe the processes at each layer of the
TCP/IP stack

• Explain the DNS resolution process

• Explain packet switching in contrast to
circuit switching

• State the advantages of layering protocols
in the TCP/IP stack

• Explain, by use of example, the difference
between client and server-side processing

• Use sequence and selection statements in
JavaScript with a range of data types
including arrays

• Describe how improved code quality can
protect against networking vulnerabilities

• Apply the PageRank algorithm using
iterative steps

Legal, moral,
ethical and

cultural issues

• Computing related legislation

• Ethical, moral and cultural issues

• Privacy and censorship

• Students understands the key factors of
each of the following laws: The Data
Protection Act 1998, The Computer Misuse
Act 1990, The Copyright Design and Patents
Act 1988, The Regulation of Investigatory
Powers Act 2000

• To understand the impact that technology
has on the following areas:
• Computers in the workforce.
• Automated decision making.
• Artificial intelligence.
• Environmental effects.
• Censorship and the Internet.
• Monitor behaviour.
• Analyse personal information.
• Piracy and offensive communications.
• Layout, colour paradigms and character
sets

• Essay style writing questions

• Group activities and
presentation on different moral
factors

Systems Software

• Functions of an Operating System

• Types of Operating Systems

• Nature of Applications

• Programming Languages

• State the function and purpose of an
operating system

• Describe scheduling algorithms: round
robin, first come first served, multi-level
feedback queues, shortest job first and
shortest remaining time

• Describe distributed, embedded, multi-
tasking, multi-user and real-time operating
systems

• Describe the function of BIOS and device
drivers

• Distinguish between systems software and
applications software

• Describe what is meant by a utility program
and give examples

• Be able to justify a suitable application for a
specific purpose

• Distinguish between open source and
closed source software

• State the roles of an assembler, compiler
and interpreter

• Describe the use of libraries

• Describe memory management (paging,
segmentation and virtual memory)

• Describe the role of interrupts

• Describe the need for processor scheduling
algorithms

• Explain the difference between compilation
and interpretation, and describe situations
when both would be appropriate

• Describe what is meant by a virtual machine

• Describe the stages of compilation: lexical
analysis, syntax analysis, code generation
and optimisation

• Describe the function of linkers and loaders

• Students will complete a range
of homeworks to test the skills
learnt

• Students will complete
worksheets and questions from
the OCR text book

• End of Unit Test

