KS5 Curriculum Map — Computer Science:

Topic

Substantive Knowledge

This is the specific, factual content for
the topic, which should be connected
into a careful sequence of learning.

Disciplinary Knowledge
(Skills)

This is the action taken within a
particular topic in order to gain

substantive knowledge.

Assessment
Opportunities

What assessments will be used
to measure student progress?

Programming
Techniques

Programming Basics
Selection
Iteration
Subroutines
Recursion
Object-Oriented Programming

use arithmetic operations and Boolean
operations NOT, AND and OR

use functions and library subroutines
including random number generation

know how to define and call a subroutine
(procedure or function) with parameters
construct algorithms using one-dimensional
arrays

describe what is meant by recursion

define the OOP terms class, object, method,
attribute, inheritance, encapsulation and
polymorphism

draw an inheritance diagram

describe features of an IDE which are useful
in developing and debugging a program
write a pseudocode solution for a problem
involving iteration and selection (branching)
use structured programming techniques
and write their own subroutines with
parameters

construct algorithms using two-dimensional
arrays

use local and global variables in subroutines
trace through a recursive algorithm

Students will be assessed in
their construction of classes and
sub-classes in Python.

While students will develop
classes in Python, they will
develop their understanding of
constructor methods and how
to interpret them in
Pseudocode (OCR Reference
Language).

Students will complete a range
of homeworks to test the skills
learnt

Students will complete
worksheets and questions from
the OCR text book

End of unit topic test.

compare iterative and recursive algorithms
for solving a problem

complete given pseudocode for an object-
oriented program

write complex algorithms involving data
structures, subroutines and file-handling
interpret complex algorithms and
determine the output

explain why using local variables makes a
program easier to maintain

distinguish between passing parameters by
value and by reference

write a recursive algorithm to solve a
problem

use object-oriented programming
techniques to solve problems

Components of a
computer

Processor components
Processor performance
Types of processor
Input devices

Output devices
Storage devices

Understand the functions of the following
components: ALU, CU, PC, ACC, MAR, MDR,
CIR

How data is sent between components via
the address and data bus

The Fetch-Decode-Execute Cycle; including
its effects on registers

The factors affecting the performance of
the CPU: clock speed, number of cores,
cache

How pipelining works

The difference between Von Neuman and
Harvard architecture

The difference between CISC and RISC and
how it is now impacting the market

How multicore and parallel systems work
GPUs and how they differ to CPU
Different types of technology used in
secondary storage and their advantages
and disadvantages

RAM, ROM and virtual storage and how
swapping takes place

Students will be assessed on
their understanding of the FDE
via the LMC

Complete a range of in class
activities to identify whether
parallel processing or multicore
works better

Complete tasks in the OCR text
book

Complete a range of
homeworks to consolidate
student’s knowledge and
understanding

End of unit test

Computational
Thinking

Thinking Abstractly

Thinking Ahead

Thinking Procedurally

Thinking Logically, Thinking Concurrently
Problem Recognition

Problem Solving

explain the differences between an
abstraction and reality

describe the need for reusable program
components

identify the inputs and outputs for a given
situation

interpret simple algorithms to describe
their purpose

give an example of how caching is used in a
computer system

determine the preconditions for devising a
solution to a problem

describe the nature, benefits and
drawbacks of caching

identify the components of a problem and
its solution

determine the order of steps needed to
solve a problem

determine the logical conditions that affect
the outcome of a decision

describe the nature of and need for
abstraction

devise an abstract model for a variety of
situations

design algorithms to solve complex
problems

hand trace a complex algorithm to say what
it does

determine the parts of a problem that can
be executed concurrently

outline the benefits and trade-offs that
might result from concurrent processing in
a particular situation

apply techniques of backtracking, data
mining, heuristics, performance modelling,
pipelining and visualisation to the solution
of problems

Students will complete a range
of homeworks to test the skills
learnt

Students will complete
worksheets and questions from
the OCR text book

End of Unit Test

e Primitive data types, binary and
hexadecimal
e ASCIl and Unicode

Students will be able to convert to different
number systems (binary, hexadecimal and
denary)

Students are able to represent negative
numbers using sign and magnitude and
two’s complement

Perform binary addition and subtraction

Students will complete a range
of homeworks to test the skills
learnt

Students will complete

Data Types rksheets an ions from
P e Binary arithmetic Representation of normalisation of floating- worksheets and questions fro
. the OCR text book
e Floating point arithmetic point numbers .
. End of unit test to test students
e Bitwise manipulation and masks Perform floating point arithmetic .
_) . understanding of the whole
Apply bitwise manipulation and masks, topic
combining with AND, OR and XOR
How to represent characters sets (ASCIl and
UNICODE)
list the stages in the waterfall lifecycle
model
name two other systems development
models
name and describe different types of
testing .
. . Students will complete a range
write a pseudocode algorithm to solve a .
. of homeworks to test the skills
simple problem
learnt

use a trace table to trace through an ,

. Students will complete
algorithm]
interpret simple algorithms to describe worksheets and guestions from

e Systems Analysis Methods . P ple g the OCR text book
Software their purpose

Development

e Writing and Following Algorithms
e Programming Paradigms

list two features of a good algorithm
Define the term “programming paradigm”
and give an example of two paradigms
define the terms object, class, method,
attribute, inheritance

draw a simple inheritance diagram for a set
of classes in an object-oriented approach
describe agile methodologies, extreme
programming, the spiral model and rapid
application development

write pseudocode algorithms to solve
problems

Students will differentiate
between different Systems
Analysis methods and refer to
these in their programming
project.

End of Unit test

describe different programming paradigms,
including procedural, and object-oriented
paradigms

explain the terms encapsulation and
polymorphism

distinguish between immediate, direct and
indirect addressing modes in assembly
language

describe the relative merits and drawbacks
of different software development
methodologies and when they might be
used

design algorithms to solve complex
problems

explain why different programming
paradigms are suited to different
applications and the advantages of each
describe and use four methods of
addressing memory: immediate, direct,
indirect and indexed

Boolean Algebra

Logic gates and truth tables
Simplifying Boolean expressions
Karnaugh maps

Adders and D-type flip-flops

Define problems using Boolean logic
Manipulate Boolean expressions, including
the use of Karnaugh maps to simplify
Boolean expressions

Use the following rules to derive or simplify
statements in Boolean algebra: De
Morgan’s Laws, distribution, association,
commutation, double negation

Using logic gate diagrams and truth tables
Understand the logic for half and full adders

Apply problem solving skills to
create logic gate circuits for real
world scenarios

Worksheets to tests student’s
ability to simplify Boolean
expressions

Create half and full adders using
logic.ly and breadboards in
lessons

Homeworks to consolidate
students understanding

End of unit topic test

Data structures

Arrays, tuples and records
Queues

Lists and linked lists
Stacks

Hash tables

Graphs

Arrays (of up to 3 dimensions), records,
lists, tuples — how to create and iterate
through in a high-level programming
language

Create a linked-list and how to insert,
delete from a linked list

Students will be assessed in
Python by completing a range
of programming tasks to create
the data structures using OOP
Worksheets to test student’s
knowledge and understanding

Trees

Graph (directed and undirected) and how to
traverse through a graph

Implementation and operations of a stack
and how they are used in functions

Trees and the key concepts and how to
perform a range of traversals, binary search
tree,

Hash tables and hashing algorithms with
the use of dictionaries

Homeworks given for each data
structure
End of unit topic test

Exchanging Data

Compression and Encryption

Database Concepts

Relational Databases and Normalisation
Introduction to SQL

Defining and Updating Tables using SQL
Transaction Processing

explain the difference between lossy and
lossless compression and list advantages
and disadvantages of each

define the terms relational database,
foreign key, secondary key, entity

draw a simple entity relationship diagram
involving three or four entities

state the properties of a database in Third
Normal Form

interpret a simple SQL statement

list methods of capturing data for input to a
database

explain the differences between
asymmetric and symmetric encryption
explain the use of hashing to encrypt data
draw a complex entity relationship diagram
involving several entities

normalise a database to third normal form
list the advantages of a normalised
database

describe methods of capturing, selecting,
managing and exchanging data

Describe what is meant by redundancy
Explain what is meant by referential
integrity

use SQL to modify a database

describe what is meant by transaction
processing and ACID

Students will create, interpret
and explain SQL statements.
Students will reduce the
duplication of data and use
normalisation to allow for
consistent data across a large
database.

Students will use SQL to create,
modify and delete
data/databases

Students will complete a range
of homeworks to test the skills
learnt

Students will complete
worksheets and questions from
the OCR text book

End of unit test

Analysis and design of algorithms
Searching algorithms
Bubble sort and insertion sort

Analysis and design of algorithms for a
given situation

The suitability of different algorithms for a
given task and data set, in terms of
execution time and space

Measures and methods to determine the
efficiency of different algorithms, Big O
notation (constant, linear, polynomial,
exponential and logarithmic complexity)

Programming tasks to create
the algorithms previously
mentioned

Trace tables to be able to trace
through algorithms

Algorithms] .) . Worksheets to tests student’s
Merge sort and quick sort Comparison of the complexity of algorithms .)
]) . ability to work out the time
Graph traversal algorithms Algorithms for the main data structures, complexity
Optimisation algorithms (stacks, queues, trees, linked lists, depth- ,
) . Worksheets to assess student’s
first (post-order) and breadth-first traversal . . .
ability to describe algorithms
of trees) End of unit test
Standard algorithms (bubble sort, insertion
sort, merge sort, quick sort, Dijkstra’s
shortest path algorithm, A* algorithm,
binary search and linear search)
State the importance of protocols and
standards
Describe the structure of the Internet
Explain the protocols used within the Students will complete a range
TCP/IP stack of homeworks to test the skills
Demonstrate DNS in action using an IP learnt
The Structure of the Internet address within a web browser Students will complete
Internet Communication Describe and identify examples of LANs and worksheets and questions from
HTML & CSS WANSs the OCR text book
Networks . . L .
JavaScript Explain packet switching Students will be assessed on

Search Engine Indexing
Client-Server & Peer-to-Peer

Provide examples of network threats and
state methods to overcome these

Explain the function of a firewall

State the functions of a proxy server
Create a basic webpage using HTML and
some CSS

Use JavaScript to make web form elements
interactive and add validation

their ability to create interactive
and high-functioning web pages
using HTML, CSS and JavaScript

End of Unit Test

Describe the characteristics of the
PageRank algorithm and state the factors
that influence page ranking

Describe the processes at each layer of the
TCP/IP stack

Explain the DNS resolution process
Explain packet switching in contrast to
circuit switching

State the advantages of layering protocols
in the TCP/IP stack

Explain, by use of example, the difference
between client and server-side processing
Use sequence and selection statements in
JavaScript with a range of data types
including arrays

Describe how improved code quality can
protect against networking vulnerabilities
Apply the PageRank algorithm using
iterative steps

Legal, moral,
ethical and
cultural issues

Computing related legislation
Ethical, moral and cultural issues
Privacy and censorship

Students understands the key factors of
each of the following laws: The Data
Protection Act 1998, The Computer Misuse
Act 1990, The Copyright Design and Patents
Act 1988, The Regulation of Investigatory
Powers Act 2000

To understand the impact that technology
has on the following areas:

e Computers in the workforce.

¢ Automated decision making.

* Artificial intelligence.

e Environmental effects.

¢ Censorship and the Internet.

e Monitor behaviour.

¢ Analyse personal information.

e Piracy and offensive communications.

e Layout, colour paradigms and character
sets

Essay style writing questions
Group activities and
presentation on different moral
factors

Systems Software

Functions of an Operating System
Types of Operating Systems
Nature of Applications
Programming Languages

State the function and purpose of an
operating system

Describe scheduling algorithms: round
robin, first come first served, multi-level
feedback queues, shortest job first and
shortest remaining time

Describe distributed, embedded, multi-
tasking, multi-user and real-time operating
systems

Describe the function of BIOS and device
drivers

Distinguish between systems software and
applications software

Describe what is meant by a utility program
and give examples

Be able to justify a suitable application for a
specific purpose

Distinguish between open source and
closed source software

State the roles of an assembler, compiler
and interpreter

Describe the use of libraries

Describe memory management (paging,
segmentation and virtual memory)
Describe the role of interrupts

Describe the need for processor scheduling
algorithms

Explain the difference between compilation
and interpretation, and describe situations
when both would be appropriate

Describe what is meant by a virtual machine
Describe the stages of compilation: lexical
analysis, syntax analysis, code generation
and optimisation

Describe the function of linkers and loaders

Students will complete a range
of homeworks to test the skills
learnt

Students will complete
worksheets and questions from
the OCR text book

End of Unit Test

