

KS5 Curriculum Map – Chemistry:

Tonic	Substantive Knowledge	Disciplinary Knowledge (Skills)	Assessment Opportunities
Topic	This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	This is the action taken within a particular topic in order to gain substantive knowledge.	What assessments will be used to measure student progress?
Atomic structure	 History of atomic structure Isotopes Mass Spectrometry Spdf electron configuration Ionisation energy Ionisation energy trends Physical properties of p3 (atomic radius, mp) 	 Idea that scientific models change over time based on experimental evidence Use significant figures appropriately when calculating values from data. Rearrange equations and substitute in formulae to calculate time of flight. Predict reactivity and charge on ions based on size of nuclear charge, distance, shielding, and IE value, and relate this to positions on the periodic table. Use IE as evidence for electron structure 	 Class questions + calculations Whiteboards Discussion in class
Bonding	 Ionic bonding Covalent bonding Polar bonds Shape Intermolecular forces Metallic bonding Physical properties of different structure types 	 Determine bonding type based on electronegativity values Use VSEPR theory to predict shapes of molecules up to 6 electron pairs Predict trends in boiling point based on bonding type and /or intermolecular forces 	TestMolymodsExtended writing
Calculations	 Avogadro's constant Empirical formula Reacting Mass Limiting reagent % yield Atom economy 	 Calculate numbers of particles using Avogadro's number as a large number that constitutes a mole Relate atom economy to economic and environmental concerns 	 Required practical Class calculation exercises Method design

	 Solution calculations Titrations (including back titration) Gas volumes and the ideal gas equation 	 Manipulate data accurately taking experimental uncertainties into account Correctly carry out practical work using apparatus to generate accurate data Explain and calculate gas volumes and pressure using the idea that size of gas particle is independent of gas volume. 	
Energetics	 Exothermic and endothermic reactions Use of calorimetry Standard conditions Bond enthalpy Hess' Law Definitions for formation and combustion 	 Draw energy level diagrams Identify most accurate means of calculating enthalpy allowing for the fact that bond enthalpy are mean values and maybe less accurate Design experiments to control variables Us graphs to calculate enthalpy changes accurately from experimental data 	Required pracMethod designData processing
Equilibria	 Le Chatelier's principle Kc Calculations Kp 	 Predict changes in the position of equilibrium based on a change in conditions Determine the effect of condition changes on the value of equilibrium constant Derive units for the equilibrium constant Use quadratic equations to solve Kc calculations Carry out titration work accurately to generate experimental data 	 in class calculation questions Experimental method Data processing
Rates of reaction	 Maxwell – Boltzmann energy distribution Methods of monitoring rates of reaction Conditions affecting rates of reaction Catalysts 	 Predict changes in the rate of a chemical reaction based on collision theory Use the area under a curve to explain the effect of changes in temperature and catalyst for Maxwel Boltzmann curves Calculate mean rate and rate at a given point in time Evaluate accuracy and quantity of data from experiment 	 Required practical Method design Extended writing

Introduction to inorganic Chemistry	 Different types of reaction (precipitation, thermal decomposition, acid) Solubility rules 	 Write equations for common reaction types Correctly determine formulae for a range of compounds Process experimental data to draw conclusions about reaction types Make observations and record them accurately Apply the law of conservation of mass to chemical calculations 	 Short exercises in class Practical work GCSE content test
Group 2	 Trends in atomic radius, IE and mp Reactions and uses Solubility of hydroxides and sulfates 	 Predict trends in mp unit knowledge of structure and bonding Write relevant ionic and chemical equations for reactions of group 2 Make and record experimental observations 	Practical work
Redox and group 7	 Oxidation numbers Oxidising and reducing agents Trends in reactivity, electronegativity, boiling points, oxidising / reducing ability Uses of group 7 elements Reactions with water and of sodium halides with conc sulfuric acid Ion tests 	 Balance redox equations using half equations Explain trends in group 7 using electronegativity and IE, Inter molecular forces and structure Discuss ethical considerations relating to additives to water 	Required practicalWhiteboardsShort exercises in class
Introduction to Organic Chemistry	 Functional groups Isomers (including geometric and optical) Different properties for isomers 	 Nam organic compounds using IUPAC rules Correctly apply different types of formula Identify E/Z isomers based on the fact that the nature of double bonds prevents rotation Apply SIP priority rules to name isomers 	Molymodswhiteboards
Alkanes	 Crude oil and fractional distillation Combustion Pollutants Cracking Free radical substitution (including ozone depletion) 	 Show electron movement by curly arrows Explain why free radicals are highly reactive 	Mechanism writing

Haloalkanes	 Nucleophilic substitution Bond strength and polarity of C-X bond Elimination reactions Conditions 	 Relate atomic radius to bond strength and use this o predict trends in rate of reaction 	 Practical work Mechanism writing Molymods
Alkenes	 Structure + bonding Addition reactions Addition polymerisation 	 Predict major and minor products using understanding of positive inductive effect (electron donating / withdrawing groups) Predict structures of reactive intermediates Compare stability of intermediates (relation to major / minor products) 	Synoptic questionsNaming practice
Alcohols	 Trends in physical properties Formation of alcohols Oxidation reactions Elimination reactions Tests for functional groups 	 Predict physical properties based on the length of C chain Evaluate of different methods of alcohol production Write equations for redox reactions Carry out practical wok safely and complete a risk assessment Distil a product and heat under reflux 	 Practical work Synoptic questions Required practical (distillation and Chemical tests)
Amines and condensation polymers	 Trends in physical properties Base strength Preparation of amines Reactions of amines Uses Condensation polymerisation 	 Determine properties of a base Predict base strength of organic compounds using understanding of electron donating and withdrawing groups Determine products of reaction for nucleophilic substitution (including further substitution) based on reaction conditions Consider ability of different polymers to biodegrade / recycle 	 Practical work Molymods Extended writing
Biochemistry	 Amino acids Protein structures and function Effect of pH Hydrolysis DNA structure 	 Explain folding of polymers in terms of intermolecular forces Explain denaturing enzymes using knowledge of acid reactions Calculate and explain Rf values 	 Molecule drawing Synoptic questions Test

Rates of reaction	 Rate equation Determining mechanism from rate equation Activation Energy and Arrhenius equation 	 Determine the Rate determining step for a reaction using experimental data Determine order of reaction from graph data Determine activation energy using graphs Use software to process experimental data 	 Practical work Data processing Graph plotting Method design
Thermodynamics	 Definitions of enthalpy terms Born Haber cycles Experimental and theoretical lattice enthalpy Solubility cycles Entropy Gibbs free energy 	 Understanding of Hess' law Predict degree of covalency using the ideal ionic model Convert units when combining different terms together in a calculation Explain differences in spontaneity using graph skills (y=mx+c) 	In class calculationsDrawing cycles
Acids and bases	 Bronsted Lowry definition Lewis definition pH Kw Weak and strong acids Ka calculation Buffers Salt pH Titration curves indicators 	 Recall general acid reactions Use logs to calculate pH assumptions and approximations used in these calculations equilibrium reactions titration methods variables and reliability of data (calibration) 	 Required practical In class calculations Method design Sketching of curves
Electrochemistry	 Voltaic cell Standard conditions Standard Hydrogen electrode Representing cells Commercial applications 	 Determine oxidation numbers for elements in a range of compounds Deduce redox equations Apply knowledge of equilibria to explain cells 	 Required practical Method design Equation writing and calculation in class Test
Alehydes and ketones	 Reduction using NaBH₄ Nucleophilic addition mechanisms 	 Recall Organic oxidation reactions Carry out tests to identify functional groups Explain why nucleophilic addition reactions involving CN⁻ produce a racemic mixture 	MolymodsWhite boardsMechanism drawing.

Carboxylic acids and derivatives	 Properties and uses of esters. Biodiesel Esterification reactions Nucleophilic addition-elimination mechanisms Acid anhydrides, acyl chlorides and amides Synthesising, analysing and testing aspirin. Synthesis and purification of ethyl ethanoate Recrystallisation 	 Recall Weak acids and their reactions Draw mechanisms for carbonyl reactions using polarity of C=O bond. Comparing the strength of nucleophiles (e.g. water, ammonia and amines). Prepare an organic solid and liquid using appropriate separation and purification techniques 	 Required practical Diagram drawing
Aromatic compounds	 Bonding and structure of benzene Stability Electrophilic substitution reactions (nitration and Friedel-Crafts acylation. Drawing mechanisms and describing uses of products. 	 Evaluate and compare evidence for the stability of benzene. Calculate stability based on thermochemical data and bond length data. 	 Flow diagram questions Synoptic questions Synthesis questions
Synthesis and analysis	 IR spectroscopy C-13 and H-1 NMR spectroscopy Thin layer and gas-liquid chromatography 	 Recall reaction conditions for reactions on the specification Construct synthesis pathways and draw relevant mechanisms. Evaluate production methods based on number of steps, yield and atom economy. Determine molecular formulae using mass spectrometry data Interpret data from data tables Calculate Rf values for chromatography 	 Required practical Problem based questions
Transition metals	 Coordination complexes Ligand substitution reactions Coloured compounds Variable oxidation states Catalytic activity- homogeneous and heterogeneous catalysts Use of cis-platin 	 Write formulae for complex ions Determine coordination number. Deduce shapes and explain isomerism for a range of compounds Deduce the stability of complexes based on entropic and thermodynamic factors Calculate concentrations using redox chemistry Carry out practical work on aqueous chemistry to record observations accurately 	 Required practical Extended questions Whiteboards

Period 3	Trends and properties of period 3 oxidesReactions with water	 Explain trends using acid base chemistry and pH Describe the structure and bonding 	 Problem based questions
----------	---	---	---