

KS4 Curriculum Map – Chemistry:

T a sa i a	Substantive Knowledge	Disciplinary Knowledge (Skills)	Assessment Opportunities
Торіс	This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	This is the action taken within a particular topic in order to gain substantive knowledge.	What assessments will be used to measure student progress?
States of matter + separation	 Arrangement of particles in solids liquids and gases Names for processes to convert between states of matter Formulations Separation techniques (filtration, crystallisation, distillation, chromatography) 	 Apply Particle theory to explain observations Apply knowledge of physical properties to determine the most appropriate separation method Calculate retention factor Work safely in the laboratory 	Required practicalDiagram drawing
Atomic structure	 History of atomic models Plum pudding model, nuclear model (gold foil experiment), Chadwick, Bohr model, Mass, charge + location of subatomic particles Definitions of mass number and atomic number Electron structure Isotopes Calculation of RFM / RMM 	 Apply knowledge of experimental work to explain the idea that models change over time. Apply charges on Atoms and ions to determine numbers of subatomic particles Use the periodic table to determine the number of different subatomic particles and the position of electrons. Calculate RAM to an appropriate level of precision 	 Posters Calculations of RAM Short test
Bonding and analysis	 Ionic bonding Formulae of ions Tests for common ions Tests for gases Spectroscopic techniques Covalent bonding 	 Apply knowledge of stability of a full outer Full outer shell to draw bonding diagrams Write formulae for compounds Balance reaction equations Draw dot cross diagrams Compounds behave differently to their constituent elements 	 Required practical In class assessment of dot cross diagrams Ionic formula literacy

		Use ideas of subjective and objective data to explain the rationale for spectroscopic methods	
Periodic table	 History of the Periodic Table Groups and Periods Group 1 Group 7 Noble Gases Transition Metals 	 Research different scientists to enforce the idea that theories change over time and based on experimental observations Use Medeleev's table to make predictions Explain that reactivity is linked to distance, shielding and nuclear charge 	• Poster / presentation
Rates	 4 factors can affect rate – concentration, surface area, temperature and catalyst Units of rate Practical methods for studying rate Activation energy 	 State the meaning of rate of reaction Apply collision theory to explain the effect of concentration, temperature, surface area and catalysts on rate of reaction. Draw graphs and use them to draw conclusions Calculate mean rate and rate at a point in time Interpret data to draw accurate conclusions Apply knowledge of Control variables to design experimental work Identify anomalies and explain how they are caused. Use correct terminology when assessing validity of data Carry out practical work to generate data to support theory work. 	 Required practical Data manipulation Method writing
Organic Chemistry (1)	 Crude oil separation Alkanes – combustion and cracking Alkene reactions Addition polymers Pollution and environmental impact 	 Apply knowledge of separation techniques Make links between molecular size, boiling point and viscosity Use knowledge of addition reactions to predict products for reactions of alkene compounds Draw displayed formulae and structural formulae 	TestMolymods

Atmosphere	 History of the atmosphere Composition of the modern atmosphere Carbon footprints 	 Apply a knowledge of timescales to discuss the limitations of scientific evidence Apply knowledge of photosynthesis to explain changes in the atmosphere over time. Analyse data to draw relevant conclusions (evaluating quality of evidence) Explore the importance of peer review and communicating results 	 Leaflets / presentations Discussion groups / debates Analysis of current affairs
Bonding and structure	 Properties of ionic compounds Properties of covalent compounds Metallic Bonding Nanoparticles Alloys 	 Explore the benefits and limitations of different representations of substances Apply knowledge of bonding types to explain the relationship between structure type and properties Compare properties of materials with different particle Calculate SA:V ratios 	 Whiteboards Topic test Extended writing
Calculations for solids	 Moles Avogadro's constant Empirical formula Reacting mass calculation Limiting reagent % yield Atom economy 	 Correctly use tandard Form and significant figures in chemical calculations Use the law of conservation of mass to balance equations Manipulate data in order to draw valid conclusions. Compare the Environmental / economic implications of reactions using atom economy calculations 	 In class questions Data analysis Test
Energetics	 Exothermic and endothermic reactions and their uses Energy level diagrams Use of calorimeter to measure enthalpy change Bond enthalpy 	 Carry out practical work to demonstrate that energy is conserved Draw energy level diagrams including activation energy and showing the role of a catalyst Calculate enthalpy change using the knowledge that Bond breaking and making is endothermic / exothermic 	 Required practical In class calculation questions

Acid, metals and reactivity	 pH and neutralisation Reactions to form salts Practical methods Reactivity series Rusting / corrosion 	 Compare ease of purification with and without the use of a limiting reagent Determine appropriate use of separation techniques to form a pure product Write chemical and ionic equations for acid reactions and displacement reactions Design a method to effectively control variables for an experiment 	 Required practical Equation writing Method writing
Electrolysis	 Oxidation and reduction in terms of electrons Electrolytes Electrolysis molten (including AI) Electrolysis (aq) Extraction of metals Chemical cells 	 Write half equations for reactions at electrodes Discuss the link between reactivity and product formed Use knowledge of reactivity to determine the most appropriate method of metal extraction Evaluate of data to draw conclusions 	 Required practical Half equation writing Test
Water	Potable water / pure waterWater treatment	 Compare the ease of obtaining potable water (by type of water available) in different geographical regions 	 Required practical Debates / discussion
Group 7	Reactivity trendsProperties	 Explain why distance, shielding and nuclear charge are related to reactivity Predict reactions of group 7 using displacement reactions Write ionic equations Carry out risk assessments for practical work 	Practical work
Acids and calculations	 Strong and weak acids pH Concentration calculations Titration Gas volume calculations 	 Explain that strong and concentrated have different meanings Write equations to show dissociation of strong and weak acids Calculate gas volumes in reactions. Calculate product quantities for reactions involving a limiting reagent 	 Required practical Method writing In class calculations

Organic (II)	 Methods of alcohol production Reactions of alcohols Compounds formed from alcohols Uses and properties of different compounds Condensation polymers Biochemistry 	 Draw displayed formulae Asses the differences between condensation and addition reactions Predict likely reactions of compounds based on their functional groups Name organic compounds for the homologous series on the syllabus. 	 Molymods Extended writing (fermentation vs hydration) Drawing different molecules
Equilibrium	 Dynamic equilibrium Haber process Fertilizers 	 Make predictions about the position of equilibrium when changes are made to conditions Analyse data to assess the most favourable reaction conditions. Explain the compromise conditions used in the Haber process to get best yield / rate balance 	WhiteboardsIn class questions
Using resources	 Uses of materials (glass, ceramics, composites) Recycling Life cycle assessments 	 Explain how properties are linked to use of a material. Compare products based on lifecycle assessment using data given 	• Extended response questions
Revision programme			