

KS3 Curriculum Map – Chemistry:

T	Substantive Knowledge	Disciplinary Knowledge (Skills)	Assessment Opportunities
Торіс	This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	This is the action taken within a particular topic in order to gain substantive knowledge.	What assessments will be used to measure student progress?
Lab safety	 Hazard symbols Equipment Bunsen burner 	 Draw accurate 2D diagrams of equipment 	 Using a Bunsen burner safely 2D Drawing of equipment
Practical planning	 Hypothesis Variables Method Results Conclusion 	 Identify variables in an experiment Analyse results from experiments 	 Practical planning
Particle theory (solids, liquids and gases)	 Properties Density (including units) Diffusion 	 Draw particle diagrams Model diffusion using a variety of methods 	Density calculationsDensity practicalDiffusion practical
Solubility	 Key terms (DISSOLVING, SOLUBLE, INSOLUBLE, SOLUTE, SOLVENT, SOLUTION.) Key terms (FILTRATION, FILTRATE, RESIDUE) Key terms (SATURATION) Key terms (CRYSTALLISATION) 	 Apply the idea of fair testing to design experiments Explain the difference between disappearing, dissolving and melting Generate data and draw a solubility curve 	 Practical's (solubility, filtration, crystallisation) Graphing Practical planning (rock salt)

Separation techniques	 DISTILLATION involves EVAPORATION followed by CONDENSATION Chromatography can be used to separate two or more solutes dissolved in a given solvent. 	 Distil inky water Carry out chromatography or pens and food colouring Explain chromatography in terms of particle ideas Research forensic science uses of chromatography 	 Exam questions Analysing chromatograms Practical planning
Heating and cooling	Changing state	 Draw particle diagrams Use data to draw a cooling curve 	• Graphing
Rocks	 Rock cycle differences in appearance between sedimentary, metamorphic and igneous rocks Properties of sedimentary, metamorphic and igneous rocks Quantitative/ qualitative data Peer review Weathering Extrusive and intrusive rocks 	 Identify different types of rock based on their key features Research types of weathering Model weathering using experimental work Carry out practical work to determine hardness of sedimentary rocks Relate crystal size to conditions of crystallisation. 	 Devise and carry out a practical investigating the porous nature of sedimentary rocks Graphing Analysing data Conclusions
Chemical & physical changes	 Chemical change (permanent) Physical change (temporary) Key terms (ELEMENT, MIXTURE, COMPOUND) Key terms (REVERSIBILITY) 	 Use experimental work to demonstrate examples of chemical and physical changes 	Practical planningEquation writing
Acids and bases	 Key terms (ACID, ALKALI, BASE, INDICATOR) pH scale Key terms (SALT, NEUTRALISATION)) 	 Determine what makes a good indicator based on quantitative vs qualitative data Draw coloured diagrams of the pH scale 	 Practical planning Equation writing Graphing

Composition of air	 burning requires oxygen oxygen combines with elements during burning and another word for burning is OXIDATION. Fire triangle % composition of air Test for water 	 Write word equations for the reactions covered to date Use examples of Cu and Mg to explain reactions of metals with oxygen Make accurate observations and record them 	Candle experiment – (Graphing Interpret data, identify patterns, Evaluation of methods.)
Carbon cycle	 CO₂ can be produced by human activity Pollution of atmosphere Climate change Global warming Carbon cycle 	 Draw diagrams and annotate to explain Formation / Problems / effects / solutions 	Exam questions
Composition of the earth	 label the main cross sections of the Earth and its atmosphere. 	 Create visual representations to explain models of the Earth. Compare different ways of presenting information 	• Poster
Elements and the periodic table	 Key terms (ATOM, ELEMENT, COMPOUND, MIXTURE, PURE) Element symbols 	 Draw particle diagrams Classify substances according to definitions learned Compare the origin of different element names 	• Quick element quiz
Chemical and physical changes	 Metals are found on the LHS of the periodic table Non-Metals are found on the RHS of the periodic table Key terms (malleability, ductility, electrical conductivity, magnetism, density, shine (lustrous) melting point) 	 Compare physical properties of metals and non-metals through experiment Compare chemical properties of metals and non-metals through experiment(pH of oxides) Classify unknown substances as metals and non-metals Explain common uses of metals based on properties 	 Analysing data Equation writing Research interesting elements

Groups	 Group 7 (Name, state and colour at room temperature) Group 1 Group 0 	 Make predictions about reactions of elements based on their position within a group 	 Making prediction of properties Analysing data Graphing
Forming compounds	 Elements can combine in a chemical reaction, and that the properties of the compound are not necessarily similar to the elements that it is made from. How to name compounds 	 Compare Sodium chloride with the properties of its constituent elements Repeat this for Iron sulphide Name salt compounds 	 Practical planning Equation writing Evaluation and conclusions Risk assessment
Practical work and graphs	 Bar chart Line graphs Scales, units, axis, LOBF 	 Plot graphs using the data provided and generated by experiment 	 MgO assessment (Graphing skills, Data analysis, Calculations)
Oxidation vs Combustion	• Key terms (OXIDATION, COMBUSTION)	• Classify reactions as oxidation/ combustion	 Writing equations
Law of conservation of mass	 Thermal decomposition Oxidation is when elements bond with oxygen (eg Mg) Test for water Hydrated salts Test for CO₂ Carbonate loses mass when heated (releases CO₂) 	 Explain the loss and gain of mass in experiments using the law of conservation of mass Carry out experiments to weigh to constant mass Write word equations for decomposition reactions Extrapolate Graphs to determine key information Identify variables in experimental work 	 Mg practical Graphing Practical planning

Reactivity series	 Group 1 Group 2 Properties of metals Displacement reactions Key terms (oxidation, rusting) Testing for hydrogen 	 Recall the reactions with oxygen, acid and water Make and record accurate experimental observations 	 Predictions Observations Writing equations Graphing Data collection/ evaluation Risk assessment Limitations of data
Acids and alkalis	 Properties of acids and alkalis Hazards/ precautions Indicators Key terms (concentration/ strength) pH scale 	 Discuss examples of acids and alkalis Control variables required for fair testing 	 Practical planning
Neutralisation	 Indictors pH key terms (Salt) Acid + Alkali → Salt + Water acid + carbonate → salt + water + CO₂ Testing for CO2 acid + metal oxide → salt + water. Crystallisation 	 Make a pH diagram Make a selection of salt compounds Name salts 	 Practical planning Observations Equation writing Graphing
ceramics, polymers and composites	 basic structure properties resources they are derived from 	 select the most appropriate material based on its property for a specific use 	• Poster