

KS5 Curriculum Map – Biology:

Tawia	Substantive Knowledge	Disciplinary Knowledge (Skills)	Assessment Opportunities
Торіс	This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	This is the action taken within a particular topic in order to gain substantive knowledge.	What assessments will be used to measure student progress?
Biological Molecules	 Structure and function of monomers and polymers. Examples of use. Enzyme theory and action including the lock and key model and induced fit. Factors affecting enzyme action. Enzyme inhibition. 	 Explain condensation and hydrolysis reactions. Correctly identify bonds and their use. Recall the tests for all biological molecules. Describe the two models of enzyme action. Analyse graphs showing how factors affect the rate of enzyme action. 	 Safely perform all tests for biological molecules. Analyse the results to reach a valid conclusion. Practical to investigate the impact of pH, temperature and substrate concentration on enzyme action. Required practical 1. Topic test Carbohydrates and Lipids. Topic test Proteins and enzymes.
Exchange	 ATP. Properties of water. Exchange between organisms and their environment with reference to single celled organisms, insects, fish, plants and humans. Risk factors for lung disease. Structure of the digestive system. Starch, protein and lipid digestion, with reference to co-transport. 	 Describe the structures, synthesis and roles of ATP. Describe the properties of water and the importance of the water molecule in living things. Describe inorganic ions and their roles. Describe the relationship between the size of an organism or structure and its surface area to volume ratio. Describe the exchange surface in living things and how structure relates to function. 	 SA:V calculation. Calculate rate of exchange. Interpret graphs including tidal volumes and breathing rates. Calculate pulmonary ventilation rates. Practical: Counting stomata. Interpreting graphs relating to correlations between risk factors for lung disease and occurrence of lung disease.

		 Describe the limitations of exchange surfaces with reference to water loss. Describe the difference between ventilation and exchange in mammalian lungs. Recognise correlations and causal relationships. Identify links between environmental factors and lung disease. Recall the structure and function of the digestive system. Explain the process of digestion in starch, proteins and lipids. 	 Practical: Peak flow (not suitable during pandemic). Starch digestion practical. pH on bile salts practical. Topic test.
Mass Transport	 Structure and role of haemoglobin. Oxygen dissociation curves. Circulatory system of a mammal. Structure of the heart and vessels. Risk factors associated with cardiovascular disease. The cardiac cycle. Tissue fluid formation. Transport of water and organic substances in plants. 	 Describe the structure and function of haemoglobin. Interpret and explain oxygen dissociation curves with reference to the loading and unloading of oxygen, and to the environment the organism lives in. Describe the key features of a mammalian circulatory system and label key components. Label the key features of the heart and explain the key features of the cardiac cycle with reference to volume and pressure. Label key features of blood vessels and relate to function. Describe the formation of tissue fluid. Describe movement of water through the xylem with reference to transpiration, evaporation and cohesion tension. Describe the mass flow mechanism for the transport of organic substances in the phloem. Describe and evaluate the mass flow mechanism with reference to tracers and ringing experiments. 	 Analyse and interpret data associated with specific risk factors and the incidence of cardiovascular disease. Calculate cardiac output and interpret graphs relating to pressure and volume changes in the heart. Required practical number 5. Topic test. Exam questions and extended writing. Interpret data collected using a potometer.

Statistical Tests	 Standard deviation and error bars. Chi-squared. T-test. Spearman's rank. Probability and chance. 	 Correctly identify when to use a particular statistical test. Correctly perform each statistical test. Effectively use the four statistical tests to identify the degree of significance of data collected. Define probability and chance and interpret a given probability value in terms of acceptance or rejection of a null hypothesis, using 0.05 as the critical probability value. 	 Successful use of statistical tests to determine the significance of data. Exam questions. Practical activities to design experiments that collect appropriate data for a statistical test.
Cell Structure	 Methods of studying cells. The electron microscope. Microscope measurements and calculations. Eukaryotic cell structure. Cell specialisation and organisation. Prokaryotic cells and viruses. 	 To use the equation triangle for calculating the size of image, magnification and size of object. Describe cell fraction and explain how ultracentrifugation works. To explain differences between scanning and transmission electron microscopes including limitations. To be able to calibrate an eye piece graticule. Describe the structure and function of eukaryotic cell structures found in animal and plant cells. To describe how cells are arranged into tissues, organs, organ systems and give examples. Comparison of prokaryotic and eukaryotic cells. Label the basic structure of a virus. 	 To be able to prepare a microscope slide and do a biological drawing in line with exam board specifications. Mathematical skills. Exam questions. Topic test on cell structure.
Transport across cell surface membranes	 Structure of cell surface membrane. Transport across membrane using diffusion, facilitated diffusion, osmosis and active transport. Co-transport and absorption of glucose in the ileum. 	 Explain the fluid mosaic model of the cell membrane structure. Distinguish the difference between diffusion and facilitated diffusion. To explain how water potential affects water movement including the effects of solutes. Explain the process of active transport and the conditions required. 	 Required practical 3. Required practical 4. Exam questions. Mathematical skills. Topic test: Transport across cell surface membrane.

		 To explain the role of co-transport and the absorption of glucose in the ileum. 	
Nucleic acids and protein synthesis	 The structure of RNA and DNA. DNA replication. DNA, Chromosomes and the Genetic code. The structure of mRNA and tRNA. Protein synthesis: transcription and splicing. Protein synthesis: translation. 	 To describe the differences between the structure of RNA and DNA and how they are related to their function. To explain the semi-conservative process of DNA replication and discuss evidence for this process. To explain how genes code for polypeptides. To describe the differences between DNA in prokaryotic cells and eukaryotic cells. To explain the nature of homologous chromosomes. To describe the role of messenger RNA (mRNA) and transfer RNA (tRNA). To explain how pre-mRNA is produced and modified to form mRNA. To explain how a polypeptide is synthesised during translation. 	 Exam questions. Mathematical skills. Topic test DNA and Protein Synthesis.
Cell division and diversity	 Mitosis and the Cell Cycle. Gene mutations. Meiosis and genetic variations. Genetic diversity and adaptation. Types of selection. Quantitative investigations of variation. 	 To be able to distinguish the stages of mitosis in animal cells. To explain how mitosis is controlled and how cancer and its treatment relates to the cell cycle. To explain how deletion and substitution of bases results in a different amino acid sequence. To describe the process of meiosis and explain how it creates genetic variation. Describe what factors influence genetic diversity and how it enables natural selection. Describe environmental factors which exert selection pressure. 	 Required Practical 2. Required Practical 6. To be able to interpret life cycles of animals and plants. Distinguish stages of mitosis using electro micrographs. Work out mitotic index. To be able to calculate standard deviation. To interpret error bars on graphical data. Topic test: Mitosis and Meiosis

		 To distinguish between stabilising and directional selection using antibiotic resistance as an example. To explain what is meant by the mean and standard deviation. 	
Cell recognition and the immune system	 Defence mechanisms and phagocytosis. T lymphocytes and cell mediated immunity. B lymphocytes and humoral immunity. Antibodies. Vaccination. Human Immunodeficiency Virus (HIV). ELISA tests. 	 To explain the difference between specific and non-specific defence systems including the process of phagocytosis. To explain the role of T-cells and cell mediated immunity. To explain the role of B-cells and the production of antibodies including the roles of plasma cells and memory cells in the secondary immune response. To be able to label the antibody structure and discuss its function. Explain how monoclonal antibodies are produced and used. Describe the features of an effective vaccination programme including ethical issues associated. Describe the structure of HIV and explain how it replicates. Explain how the ELISA test works. 	 Interpret graphs of primary and secondary response. Exam questions. Extended writing on the ethics of vaccinations. Topic test immunology.
Biodiversity	 Species and taxonomy. Diversity within a community. Species diversity and human activities. Investigating diversity. 	 To explain the concept of a species and how they are named. To explain the principles of classification and how they are related to evolution. To explain the importance of courtship behaviour for the survival of the species. Explain how the diversity index is used to measure species diversity. Describe the impact of agriculture on species diversity. Explain the importance of conservation. 	 Calculating the index of diversity. Research for conservation methods. Extended writing. Exam Questions. Topic test: Biodiversity.

Energy and Ecosystems	 Food chains, energy transfer, and productivity. Nutrient cycles, including nitrogen, phosphorous, and decay. Use of natural and artificial fertilisers. Environmental issues concerning the use of nitrogen-containing fertilisers. 	 To explain the use of a range of techniques in comparing genetic diversity within and between species. Explain how energy is entered, transferred and lost between organisms in an ecosystem. Explain what is meant by GPP and NPP and use appropriate formulas to calculate values using given data. Describe the stages involved in decay and how nutrients are recycled. Describe the role of mycorrhizae in nutrient cycles. Describe why fertilisers are needed in agricultural ecosystems, how they increase productivity and the main environmental effects with reference to species diversity, leaching and eutrophication. 	 Calculate net and primary production. Calculate the efficiency of energy transfers. Interpret data and graphs relating to energy transfers. Evaluate the use of fertilisers, considering the effects on the environment. Topic test: Energy and Ecosystems. Exam style questions.
Homeostasis	 Principles of homeostasis. Feedback mechanisms. Hormones and the regulation of blood glucose concentration. Diabetes and its control. Kidney anatomy, the role of the nephron and osmoregulation. The role of hormones in osmoregulation. 	 Explain the importance of homeostasis and how the control mechanisms are coordinated. Explain what homeostasis is and how it helps to control homeostatic processes. Distinguish between positive and negative feedback. Explain how hormones work, with reference to adrenaline on regulating blood glucose. Explain the roles of organs and hormones in the regulation of blood glucose. Distinguish between type 1 and type 2 diabetes and how they are controlled. Describe the structure of the nephron and relate it to the function. Explain the role of hormones in osmoregulation. 	 Keywords. Interpret information in reference to positive and negative feedback. Interpret graphs showing blood glucose levels to determine if someone is likely to be diabetic. Required practical 11. Topic test: Homeostasis. Exam style questions.

Respiration	 Glycolysis, link reaction and Krebs cycle. Oxidative phosphorylation. Anaerobic respiration. 	 Describe the main stages of and the products formed in glycolysis, the link reaction and the Krebs cycle. Explain the significance of each stage with reference to coenzymes and ATP. Explain the process of oxidative phosphorylation in the electron transfer chain. Explain the process of anaerobic respiration and how it differs from aerobic respiration. Make comparisons between anaerobic respiration in mammals and microorganisms. 	 Interpret experimental data relating to respiration to determine factors affecting the rate. Required practical 9. Extended writing. Topic test: Respiration. Exam style questions.
Response to Stimuli and Nervous Coordination	 Survival and response. Plant growth factors. A reflex arc. Receptors. Control of heart rate. Neurones, the nervous system and nerve impulse. Passage and speed of an action potential. Structure and function of the synapse. Transmission across a synapse. Drugs and the synapse. 	 Define stimulus, response, taxis, kinesis and tropism. Explain the response in plants to specific stimuli. Explain how a specific reflex arc works with reference to sensory, intermediate and motor neurones and how it improves likelihood of survival. Describe the main features of the Pacinian corpuscle, rod and cone cells and how it relates to function. Describe and explain how the heart rate is controlled with reference to chemoreceptors and pressure receptors. Explain how the autonomic nervous system controls heart rate. Draw and label a myelinated motor neurone and link to function. Describe the nature of the resting and action potential and how it works within a neurone. Compare and contrast an action potential in a myelinated and unmyelinated neurone. 	 Required practical 10. Interpreting old practical data on IAA in plants. Calculate loss of neurones over time. Topic test. Interpretation of graphs relating to axon membrane potential difference. Exam style questions.

		 refractory period and the all-or-nothing principle. Describe the structure and function of the synapse and explain how information is transmitted. Research and describe how drugs affect the nervous system. 	
Muscles	 Structure of skeletal muscle and types of muscle fibre. Neuromuscular junctions. Contraction of skeletal muscles. 	 Label gross and microscopic structure of a skeletal muscle and relate key features to function. Distinguish between the two types of muscle fibre. Describe what happens at a neuromuscular junction when a nerve impulse is received and compare to a synapse. Explain the mechanism of contraction in skeletal muscles. Evaluate evidence for the sliding filament mechanism. 	 End of topic test. Exam style questions. Appropriate use of keywords.
Synoptic Essay	Plan synoptic essays.Write synoptic essays.	 Identify links between topics in relation to a synoptic essay question. Plan an essay that is logically structured and links appropriate detail and difficulty. Mark example essays to establish good habits. Write an essay that includes appropriate detail, is well structured and grammatically correct in order to answer a synoptic essay question. 	Synoptic essay plan.Synoptic essay.
Populations and Ecosystems	 Variation in Population size. Intraspecific and interspecific competition. Predation. Succession and conservation of habitats. 	 To be able to define all key terms such as environment, communities, population and niche. To explain how factors influence population size. Describe how competition influences population size. 	 Required Practical 12. Mark-release- recapture calculations. Interpreting predator- prey graphs. Mathematical skills. Exam questions. Topic Test: Populations.

		 Explain how predator-prey relationships affect population size. Explain how to use a quadrat and transect to obtain quantitative data. Explain how to use mark-release – recapture method. Describe the changes that occur during succession. Explain how to manage succession to help conserve habitats. To be able to define the genetic 	
Inherited Change, Populations and evolution	 Monohybrid inheritance. Dihybrid inheritance and probability and genetic crosses. Co-dominance and multiple alleles. Sex linkage autosomal linkage and Epistasis. Chi-Squared test in relation to genetics Population Genetics. Variation in Phenotype. Natural Selection. Effects of different forms of selection on evolution. Isolation and Speciation. 	 terminology. Explain how a single gene is inherited. Explain how single and two different genes on different chromosomes are inherited. Explain why results of genetic results differ from predicted results. To explain how co-dominance and multiply alleles affect inheritance. To explain how sex-linked diseases are inherited. To describe and explain how autosomal linkage affects the combinations of alleles in gametes. To explain the effects of Epistasis. To demonstrate how Chi-Square test is used in Genetics. To be able to use the Hardy Weinberg Principle to calculate allele frequencies. To describe variations due to genetic and environmental factors. To explain the role of variation in selection and describe the effects of different forms of selection on evolution. To explain how new species are formed by allopatric and sympatric speciation. 	 Complete various types of genetic crosses. Mathematic Skills to calculate Hardy Weinberg and interpret the Chi-Squared Test. Extended writing on Speciation. Exam Questions. Topic Tes: Inheritance and Population Genetics.

Photosynthesis	 Photosynthesis overview. The light-dependent and light-independent reaction. Factors affecting the rate of photosynthesis 	 To be able to explain how the plant leaf is adapted to carry out photosynthesis. To explain the processes of oxidation and reduction reactions in the light-dependent cycle. Explain how ATP and NADPH is made during the light-dependent reaction. Describe the role of photolysis in the light-dependent reaction. Describe the roles of ATP and NADPH in the light in-dependent reaction. Describe the events of the Calvin Cycle. 	 Required Practical 7. Required Practical 8. Exam Questions. Research different Pigments and their absorption wavelengths. Mathematical skills. Topic Test: Photosynthesis.
Gene Expression	 Gene Mutations. Stem Cells and Totipotency. Regulation of Transcription and Translation. Epigenetic control and gene expression. Gene expression and Cancer. Genome Project. 	 To explain how different types of gene mutations lead to different amino acid sequences in polypeptides. To explain how cells lose their totipotency and become specialised. To describe cell differentiation and cell specialisation. Explain how pluripotent stem cells can be used to treat humans. Explain how Oestrogen siRNA effects gene expression. Explain the effect of epigenetic factors on DNA and histones. Explain the effects of decreased acetylation and increased methylation of DNA. Distinguish between benign and malignant tumours. The role of oncogenes and tumour suppressor genes in the development of tumours. To know the importance of genome sequencing projects. 	 Extended writing skills. Exam questions. Research task on Stems cells and cancer. Mathematical skills. Topic Test: Gene Expression.

Recombinant DNA Technology	 Producing DNA fragments. In-vivo gene cloning. The use of Vectors. In-vitro gene cloning and polymerase chain reaction (PCR). Locating genes, genetic screening and counselling. Genetic fingerprinting. 	 To explain how complementary DNA is made using reverse transcriptase. To explain how restriction endonucleases are used to cut DNA into fragments. To explain the importance of sticky ends when inserting vectors. Describe and explain how gene markers are used. To explain how the polymerase chain reaction is carried out. Describe how DNA probes are used to screen for heritable condition. To explain the technique of gel electrophoresis with regards to genetic fingerprinting. 	 Extended writing skills. Exam questions. Mathematical skills. Topic Test: Recombinant DNA Technology.
-------------------------------	---	--	--