

KS5 Curriculum Map – Further Mathematics:

	Substantive Knowledge	Disciplinary Knowledge (Skills)	Assessment Opportunities
Торіс	This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	This is the action taken within a particular topic in order to gain substantive knowledge.	What assessments will be used to measure student progress?
Proof by Induction	 Prove results about sums of series Prove results about divisibility Prove results about matrices 	 Understand the principle of proof by mathematical induction Construct proofs using mathematical induction in the context of sums of series, divisibility, and matrices. 	 Controlled Homework Baseline 5 assessment (November) Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)
Complex Numbers	 Definition of complex numbers and complex conjugates Perform basic operations with complex numbers Solve polynomial equations with complex roots Modulus-argument form Argand diagrams, including loci and regions Exponential form De Moivre's theorem Find nth roots of a complex number Solve geometric problems 	 Understand and use the 'real part' and 'imaginary part' of a complex number, and the complex conjugate, Represent complex numbers on an argand diagram Add, subtract, multiply and divide complex numbers in the form x + iy with x and y real. Solve quadratic, cubic and quartic equations with real coefficients and complex roots Understand the meaning of, and find, the modulus and argument of complex numbers; know what this represents on an argand diagram Convert between the Cartesian form and the modulus-argument form of a complex number; multiply and divide complex numbers in modulus-argument form. 	 Controlled Homework Baseline 5 assessment (November) Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)

		 Construct and interpret simple loci in the argand diagram. Know and use the definition of complex numbers in exponential form, and convert between cartesian/modulus-argument form and exponential form. Understand De Moivre's theorem and use it to find multiple angle formulae and sums of series Find the <i>n</i> distinct <i>n</i>th roots of <i>r</i>e^{iθ} for <i>r</i> ≠ 0 and know that they form the vertices of a regular <i>n</i>-gon in the Argand diagram. Use complex roots of unity to solve geometric problems 	
Matrices	 Understand the concept of a matrix and perform matrix calculations Find the inverse of a matrix and use this to solve problems. Represent linear transformations as matrices. Perform transformations in 2D and 3D using matrices. 	 Understand the concept of a matrix, and define the zero and identity matrices Add, subtract and multiply matrices Multiply a matrix by a scalar Calculate the determinant of 2x2 and 3x3 matrices Understand and uses singular and nonsingular matrices, and use this to find the inverse of 2x2 and 3x3 matrices Use matrices to solve systems of equations Interpret geometrically the solution and failure of solution of three simultaneous linear equations. Understand the properties of linear transformations and represent them using matrices Perform single and successive transformations in two dimensions using matrices, including reflections in coordinate axes, rotation through any angle about the origin, stretches parallel to the x and y axes and enlargements about centre (0,0). 	 Controlled Homework Baseline 5 assessment (November) Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)

		 Perform single transformations in three dimensions confined to reflections in the coordinate axes and rotations about the coordinate axes. Find invariant points and invariant lines for transformations. Interpret the determinant as the area (or volume) scale factor in transformations. 	
Vectors	 Equation of a line in three dimensions Equation of a plane in three dimensions Scalar product Angles between lines and planes Points of intersection Finding perpendiculars 	 Understand and use the vector and cartesian forms of an equation of a straight line in 3D Understand and use the vector and cartesian forms of an equation of a plane Calculate the scalar product and use it to express the equation of a plane, and to calculate the angle between two lines, the angle between two planes, and the angle between a line and a plane Check whether vectors are perpendicular by using the scalar product. Find the intersection of a line and a plane Calculate the perpendicular distance between two lines, from a point to a line, and from a point to a plane. 	 Controlled Homework Baseline 5 assessment (November) Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)
Momentum and Impulse	 Momentum in one direction Conservation of momentum Momentum as a vector 	 Understand the meaning of 'momentum' and 'impulse', and calculate the momentum of a particle and the impulse of a force Understand and use the impulse- momentum principle. Understand the principle of conservation of momentum, as applied to two spheres, and use it to solve problems involving collisions. Recognise that momentum can be represented as a vector. Apply the impulse-momentum principle in vector form. 	 Controlled Homework Baseline 5 assessment (November) Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)

Work, Energy, Power	 Work done Kinetic and potential energy Conservation of mechanical energy and the work-energy principle Power 	 Calculate the work done by a force when its point of application moves Calculate the kinetic energy of a moving particle and the potential energy of a particle Use the principle of conservation of mechanical energy and the work-energy principle Solve problems involving motion under variable resistance and/or motion along an inclined plane. Calculate the power developed by an engine. 	 Controlled Homework Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)
Elastic Strings and Springs and Elastic Energy	 Elastic strings and springs and Hooke's Law Energy stored in an elastic string or spring Problems involving elastic energy 	 Use Hooke's Law to solve equilibrium problems involving elastic strings or springs Use Hooke's Law to solve dynamics problems involving elastic strings or springs Find the energy stored in an elastic string or spring. Solve problems involving kinetic energy, potential energy and elastic energy using the principle of mechanical energy and the work-energy principle 	 Controlled Homework Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)
Elastic collisions in one dimension	 Direct impact and Newton's law of restitution Direct collision with a smooth plane Loss of kinetic energy Successive direct impacts 	 Understand and use Newton's Law of restitution and know that <i>e</i> is the coefficient of restitution and takes values between 0 and 1 inclusive. Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse. Solve problems involving successive direct impacts. 	 Controlled Homework Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)

Elastic collisions in two dimensions	 Oblique impacts with a fixed surface Successive oblique impacts Loss of kinetic energy Oblique impact of smooth spheres 	 Apply knowledge of momentum, impulse and restitution to smooth collisions in two dimensions. This may include problems set in vector form. Solve problems involving the oblique impact of a smooth sphere with a fixed surface. Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces. Solve problems involving the oblique impact of two smooth spheres Find the change in energy due to an impact or the application of an impulse in two dimensions. 	 Controlled Homework Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)
Calculus	 Volumes of revolution Improper integrals The mean value of a function Integration using partial fractions Differentiation of inverse trigonometric functions Integration with inverse trigonometric functions 	 Derive formulae for, and calculate, volumes of revolution. This includes revolutions around both the x axis and the y axis, and for curves given in cartesian and parametric form. Model real-life applications of volumes of revolution. Evaluate improper integrals where either the integrand is undefined at a value in the range of integration or range of integration extends to infinity. Understand and evaluate the mean value of a function. Integrate using partial fractions, extending to include quadratic factors ax² + c in the denominator. Differentiate inverse trigonometric functions Integrate functions of the form (a² - x²)^{-1/2} and (a² - x²)⁻¹ and be able to choose trigonometric substitutions to integrate associated functions. 	 Controlled Homework Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)

Hyperbolic functions	 Introduction to hyperbolic functions Inverse hyperbolic functions Identities and equations Calculus of hyperbolic functions 	 Understand the definition of hyperbolic functions sinh x, cosh x and tanh x, including their domains and ranges, and be able to sketch their graphs. Understand and be able to use the definitions of the inverse hyperbolic functions and their domains and ranges. Derive and use the logarithmic forms of the inverse hyperbolic functions. Integrate functions of the form (x² - a²)^{-1/2} and (x² + a²)^{-1/2} and be able to choose suitable hyperbolic substitutions to integrate associated functions. Differentiate and integrate hyperbolic functions. 	 Controlled Homework Baseline 6 Mock exams (January) Baseline 7 Full FM Mocks (Post- Easter)
Differential equations	 First-order differential equations Second-order homogeneous differential equations Second-order non-homogeneous differential equations Boundary conditions with second order differential equations Modelling with first-order differential equations Simple harmonic motion Damped and forced harmonic motion Coupled first-order simultaneous differential equations 	 Find and use an integrating factor to solve some first order differential equations and recognise when it is appropriate to do so. Use boundary conditions to find particular solutions to differential equations. Use differential equations in modelling in kinematics and in other contexts. Solve second-order homogeneous equations by using the auxiliary equation. Solve second-order non-homogeneous differential equations by solving the homogeneous case and adding a particular integral to the complementary function (in cases where the right-hand side of the equation is a polynomial, exponential or trigonometric function) Understand and use the relationship between the cases when the discriminant of the auxiliary equation is positive, zero and negative and the form of solution of the differential equation 	 Controlled Homework Controlled Question 2 (March) Baseline 7 Full FM Mocks (Post-Easter)

		 Understand the concepts behind simple harmonic motion, solve the equation for simple harmonic motion and relate the solution to the motion. Model damped oscillations using second-order differential equations and interpret their solutions. Analyse and interpret models of situations with one independent variable and two dependent variables as a pair of coupled first-order simultaneous equations and be able to solve them, for example predator-prey models. 	
Discrete Probability distributions	 Expected value and variance of a discrete random variable Expected value and variance of a function of X. Solving problems involving random variables. 	 Calculation of the mean and variance of discrete probability distributions. Extension of expected value function to include E(g(X)). Use these calculations to assess the suitability of models. 	 Controlled Homework Controlled Question 2 (March) Baseline 7 Full FM Mocks (Post-Easter)
Poisson and Binomial distributions	 Introduction to the Poisson distribution Modelling with the Poisson distribution Adding Poisson distributions Mean and variance of Binomial and Poisson distributions Using the Poisson distribution to approximate the Binomial distribution 	 Understand and use the Poisson distribution to solve problems. Use the Poisson distribution to model a real-world situation and comment critically on the appropriateness. Use the additive property of the Poisson distributions. Calculate the mean and variance of the Binomial and Poisson distributions. Know the conditions under which the Binomial distribution can be approximated by the Poisson distribution and use this approximation when it is appropriate to do so. 	 Controlled Homework Controlled Question 2 (March) Baseline 7 Full FM Mocks (Post-Easter)

Geometric and negative binomial distributions	 Introduction to the geometric distribution, including mean and variance Introduction to the negative binomial distribution, including mean and variance of a negative binomial distribution 	 Understand the models leading to the geometric distribution and the negative binomial distribution. Calculate the mean and variance of the geometric distribution and the negative binomial distribution. 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)
Hypothesis testing	 Understand and conduct hypothesis tests for the Poisson distribution and geometric distributions 	 Extend ideas of hypothesis testing to test for the mean of a Poisson distribution Find critical regions for a Poisson distribution Extend ideas of hypothesis testing to test for the parameter p of a geometric distribution Find critical regions for a geometric distribution 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)
Central Limit Theorem	 Introduction to the Central Limit Theorem Application of the Central Limit Theorem to other distributions 	 Understand the concepts underpinning the Central Limit Theorem Apply the Central Limit Theorem to the Binomial, Normal, Poisson, geometric and negative binomial distributions. 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)
Chi Squared Tests	 Goodness of fit Degrees of freedom and the chi-squared family of distributions Testing a hypothesis Testing the goodness of fit with discrete data Using contingency tables Apply goodness-of-fit tests to geometric distributions. 	 Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to uniform, binomial Poisson and geometric distributions. Find p-values from calculators and use tables of values to find critical values. 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)

Probability Generating Functions	 Introduction to probability generating functions Probability generating functions of standard distributions Mean and variance of a distribution Sums of independent random variables 	 Understand the definitions, derivations and applications of probability generating functions. Use the probability generating function for the negative binomial, geometric, binomial and Poisson distributions. Use probability generating functions to find the mean and variance and know the proofs of standard results. Find probability generating functions of the sum of independent random variables. 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)
Quality of Tests	 Type I and Type II errors Finding Type I and Type II errors Calculate the size and power of a test The power function 	 Know the definition of Type I and Type II errors Calculate the probability of a Type I or Type II error using the normal distribution Find the size and power of a test and draw a graph of the power function for a test. Use of Type I and Type II errors and power function to indicate the effectiveness of statistical tests (including binomial, normal, Poisson, geometric and negative binomial). 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)
Further algebra and functions	 Roots of polynomials Sums of series Method of differences Maclaurin series and series expansions of compound functions 	 Understand and use the relationship between roots and coefficients of polynomial equations, up to and including quartic equations. Form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial (of at least cubic degree). Understand and use formulae for the sums of integers, square and cubes and use these to sum other series. Understand and use the method of differences for summation of series including use of partial fractions Find the Maclaurin series of a function including the general term. Recognise and use the Maclaurin series for e^x, ln(1 + x), sin x, cos x and (1 + x)ⁿ, 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)

		and be aware of the range of values of <i>x</i> for which they are required.	
Polar coordinates	 Polar coordinates and equations Sketching curves Area enclosed by a polar curve Tangents to polar curves 	 Understand and use polar coordinates and be able to convert between polar and cartesian coordinates Sketch curves with r given as a function of θ, including use of trigonometric functions. Find the area enclosed by a polar curve Find tangents parallel to, or perpendicular to, the initial line. 	 Controlled Homework Baseline 7 Full FM Mocks (Post- Easter)