KS5 Curriculum Map - Mathematics:

Topic	Substantive Knowledge This is the specific, factual content for the topic, which should be connected into a careful sequence of learning.	Disciplinary Knowledge (Skills) This is the action taken within a particular topic in order to gain substantive knowledge.	Assessment Opportunities What assessments will be used to measure student progress?
Algebra and functions	- Surds and Indices - Expanding and Factorising - Quadratics - Simultaneous Equations - Inequalities - Graph transformations	- Use the laws of indices for all rational exponents. - Use and manipulate surds, including rationalising the denominator. - Work with quadratic functions and their graphs. - Apply knowledge of the discriminant of a quadratic function, including the conditions for real and repeated roots. - Extend completing the square to more complicated expressions. - Solve quadratic equations (including solving quadratic equations in a function of the unknown) by factorisation, use of the formula, use of a calculator or completing the square. - Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation. - Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically, including inequalities with brackets and fractions.	- Controlled Homework - Baseline 1 (October) - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ1 (January) - CQ2 (Easter) - CQ3 (November Y13) - CQ4 (March Y13)

		- Express solutions through correct use of 'and' and 'or', or through set notation. - Represent linear and quadratic inequalities on number lines and graphs. - Manipulate polynomials algebraically, including expanding brackets and collecting like terms, factorisation and simple algebraic division; use of the factor theorem - Recall and use graphs of functions; sketch curves defined by simple equations including polynomials - Interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations - Recalland use proportional relationships and their graphs. - Derive and sketch he effect of simple transformations on the graph of $y=f(x)$, including stretches, reflections and translations. Apply this to general curves with points given algebraically.	
Coordinate geometry in the (x, y) plane	- Straight line Graphs - Equation of a Circle	- Derive and use the equation of a straight line, including the forms $y-y_{1}=m\left(x-x_{1}\right)$ and $a x+b y+c=0$. - Find the equation of a line in the following cases: - two given points - parallel/perpendicular to a given line through a given point. - Apply gradient conditions for two straight lines to be parallel or perpendicular. - Use straight line models in a variety of contexts. - Derive and use the coordinate geometry of the circle including using the equation of a circle.	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ1 (January) - CQ2 (Easter) - CQ3 (November Y13) - CQ4 (March Y13)

		- Find the radius and the coordinates of the centre of the circle given the equation of the circle, and vice versa. - Complete the square to find the centre and radius of a circle; make use of the following properties: - the angle in a semicircle is a right angle - the perpendicular from the centre to a chord bisects the chord - the radius of a circle at a given point on its circumference is perpendicular to the tangent to the circle at that point.	
Sequences and series	- The binomial theorem - The binomial series	- Derive and use the binomial expansion of (a $+b x)^{\wedge} n$ for positive integer n. - Explore the notation n ! and nCr - Extend the binomial expansion to any rational n, including its use for approximation together with expansion validity	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ1 (January) - CQ3 (November Y13) - CQ4 (March Y13)
Trigonometry	- Sine, cosine and tangent of any angle - Cosine rule, sine rule and area of a triangle - Solve problems involving triangles - Trigonometric graphs and transformations - Use exact trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° - Simple trigonometric identities - Solve trigonometric equations, including quadratics	- Use of x and y coordinates of points on the unit circle to give cosine and sine respectively. - Derive from first principles, and use, the definitions of sine, cosine and tangent for all arguments - Use the sine/cosine rules and formula for the area of a triangle to solve complicated problems, including the ambiguous case of the sine rule. - Draw and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity.	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ1 (January) - CQ3 (November Y13)

		- Apply transformations of graphs to sine, cosine and tangent functions. - Derive and use $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}$ - Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle. - Solve simple trigonometric equations in a given interval, including quadratic equations in \sin , \cos and tan and equations involving multiples of the unknown angle.	
Data Collection	- Populations and samples - Sampling - Non-random sampling - Types of data - Introduction to the large data set	- Recall the terms 'population', 'sample' and 'census', interpret them in context and comment on the advantages and disadvantages of each. - Explain the implementation, advantages and disadvantages of simple random sampling, systematic sampling, stratified sampling, quota sampling and opportunity sampling. - Use samples to make informal inferences about the population - Define qualitative, quantitative, discrete and continuous data, and understand grouped data - Become fluent in the large data set and how to collect data from it, identify types of data and calculate simple statistics. - Select or critique sampling techniques in the context of solving a statistical problem and understand that different samples can lead to different conclusions about the population.	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)

Measures of location and spread	- Measures of central tendency - Other measures of location - Measures of spread - Variance and standard deviation - Coding	- Calculate and interpret measures of central tendency such as the mean, median and mode - Calculate and interpret measures of location such as percentiles and deciles, using linear interpolation - Calculate and interpret measures of spread such as range, interquartile range and interpercentile range - Calculate and interpret variance and standard deviation, including from summary statistics - Use coding to find mean, variance and standard deviation	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Representations of data	- Outliers - Boxplots - Cumulative frequency - Histograms - Comparing data	- Identify and interpret outliers in data sets - Clean data, including dealing with missing data, errors and outliers. - Draw and interpret box plots - Draw and interpret cumulative frequency diagrams - Draw and interpret histograms - Compare two data sets	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Correlation	- Introduction to correlation and the PMCC - Linear regression	- Draw and interpret scatter diagrams for bivariate data - Interpret correlation and understand that it does not imply causation - Interpret the coefficients of a regression line equation for bivariate data - Derive and use a regression line to make predictions	- Controlled Homework - Baseline Assessment 2 (February) - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)

- Find the derivative of a simple function
- Use the derivative to solve problems involving gradients, tangents and normal
- Increasing and decreasing functions
- Second derivatives

Differentiation

- Stationary points
- Sketch the gradient function of a given function
- Model real life situations with
differentiation
- Derive a derivative from first principles

Integration

- Integrating x^{n}
- Indefinite integrals
- Finding functions
- Definite integrals
- Areas under curves
- Areas under the x-axis
- Areas between curves and lines
- Use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a general point (x, y); the gradient of the tangent as a limit; interpretation as a rate of change
- Given the graph of $y=f(x)$, sketch the graph of $y=f^{\prime}(x)$ using given axes and scale. This could relate speed and acceleration for example.
- Differentiate from first principles for small positive integer powers of x
- Use the second derivative as the rate of change of gradient
- Differentiate x^{n}, for rational values of n , and related constant multiples, sums and differences.
- Apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points.
- Use differentiation to find equations of tangents and normals at specific points on a curve.
- Identify where functions are increasing or decreasing.
- Use the Fundamental Theorem of Calculus Integration as the reverse process of differentiation. Apply the constant of integration as required
- Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves
- Evaluate the area of a region bounded by a curve and given straight lines, or between two curves.
- Controlled Homework
- Baseline Assessment 2 (February)
- Baseline Assessment 3 (Summer exams)
- Baseline 4 mock exams (January of Y13)
- Baseline 5 mock exams (PostEaster of Y13)
- Controlled Homework
- Baseline Assessment 3 (Summer exams)
- Baseline 4 mock exams (January of Y13)
- Baseline 5 mock exams (PostEaster of Y13)
- CQ2 (Easter)

Exponentials and logarithms	- Exponential functions - Exponential modelling - Logarithms - Laws of Logarithms - Solving equations using logarithms - Working with natural logarithms - Logarithms and non-linear data	- Use the function a^{x} and its graph, where a is positive. - Use the function e^{x} and its graph - Recognise that the gradient of $e^{k x}$ is equal to $k e^{k x}$ and apply the exponential model when appropriate. - Use the definition of $\log _{a} x$ as the inverse of a^{x} where a is positive and $\mathrm{x} \geq 0$. - Define and use the function $\ln x$ and its graph. - Use $\ln x$ as the inverse function of e^{x} - Solve equations of the form $\mathrm{e}^{a x+b}=p$ and $\ln (a x+b)=q$ is expected. - Derive and use the laws of logarithms: - $\log _{a} x+\log _{a} y=\log _{a}(x y)$ - $\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)$ - $k \log _{a} x=\log _{a} x^{k}$ - Solve equations of the form $a^{x}=b$ - Use logarithmic graphs to estimate parameters in relationships of the form $y=a x^{n}$ and $y=k b^{x}$, given data for x and y - Use exponential growth and decay in modelling - Consider limitations of, and refine, exponential models.	- Controlled Homework - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ4(March)
Vectors	- Representing vectors - Magnitude and direction - Position vectors - Solving geometric problems - Modelling with Vectors	- Use vectors in 2D - Use column vectors and carry out arithmetic operations on vectors - Calculate the magnitude and direction of a vector - Define and use position vectors - Use vectors in speed and distance calculations - Use vector to solve problems in context. - Apply knowledge of vectors to 3 dimensions.	- Controlled Homework - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)

		- Use vectors to solve geometric problems - Model 3D motion in mechanics with vectors	
Probability and conditional probability	- Sample spaces - Venn diagrams - Mutually exclusive and independent events - Tree diagrams - Set notation - Conditional probability - Conditional probability in Venn diagrams - Probability formulae - Conditional probability in tree diagrams	- Calculate probabilities for single events - Draw and interpret Venn diagrams - Use definitions of mutually exclusive and independent events, and determine whether two events are independent - Use tree diagrams to solve problems - Use set notation in probability - Explore the concept of conditional probability - Solve conditional probability problems using two-way tables and Venn diagrams - Use probability formulae to solve problems - Solve conditional probability problems using tree diagrams - Explore simple modelling with probability, including critiquing assumptions made and the likely effect of more realistic assumptions.	- Controlled Homework - Baseline Assessment 3 (Summer exams) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Discrete probability distributions and the Binomial distribution	- Probability distributions - The Binomial distribution - Cumulative probabilities	- Define and use simple discrete probability distributions including the discrete uniform distribution - Explore the binomial distribution as a model and comment on its appropriateness - Calculate individual probabilities for the binomial distribution - Calculate cumulative probabilities for the binomial distribution	- Controlled Homework - Baseline Assessment 3 (Summer exams) - September test (Y13) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
The Normal distribution	- Introduction to the normal distribution - Finding probabilities for the normal distribution - The inverse normal function	- Explore the normal distribution and the characteristics of a normal distribution curve	- Controlled Homework - Baseline Assessment 3 (Summer exams) - September test (Y13)

	- The standard normal distribution - Finding unknown parameters - Approximating a binomial distribution	- Find percentage points on a standard normal curve - Calculate values on a standard normal curve - Find unknown means and/or standard deviations for a normal distribution - Approximate a binomial distribution using a normal distribution and understand when it is appropriate to do so. - Select appropriate distributions and solve real-life problems in context	- Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Hypothesis testing	- Introduction to hypothesis testing - Hypothesis testing with the binomial distribution - Hypothesis testing with the normal distribution - Extend correlation to include exponential models and the PMCC - Hypothesis testing for zero correlation	- Explore the language and concept of hypothesis testing - Use sample data to make an inference about a population - Find critical values of a binomial distribution - Carry out and interpret a one-tail test and a two-tail test for the proportion in the binomial distribution and interpret the results in context. - Carry out a hypothesis test for the mean of a normal distribution and interpret the results in context - Extend correlation to include exponential models and the PMCC - Carry out a hypothesis test for zero correlation, as a measure of how close data points lie to a straight line and interpret the results in context.	- Controlled Homework - Baseline Assessment 3 (Summer exams) - September test (Y13) - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Sequences and Series	- Arithmetic sequences and series - Geometric sequences and series - Geometric sum to infinity - Sigma notation - Recurrence relations - Modelling with Series	- Work with sequences including those given by a formula for the nth term and those generated by a simple relation; increasing sequences; decreasing sequences; periodic sequences. - Derive and work with arithmetic sequences and series, including the formulae for nth term and the sum to n terms	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)

		- Derive the proof of the sum formula for an arithmetic series, including the formula for the sum of the first n natural numbers - Derive and work with geometric sequences and series, including the formulae for the nth term, sum of a finite geometric series; sum to infinity of a convergent geometric series - Derive the proof of the sum formula for a geometric series - Given the sum of a series, use logs to find the value of n. - Use sequences and series in modelling.	
Proof	- Proof by deduction - Proof by counterexample - Proof by contradiction	- Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion; use methods of proof, including: - Proof by deduction - Proof by exhaustion - Disproof by counterexample - Proof by contradiction (including proof of the irrationality of 2 and the infinity of primes, and application to unfamiliar proofs).	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Algebra and functions 2	- Algebraic Fractions - Partial fractions - Repeated factors - Algebraic division - Modulus function - Functions and mappings - Composite functions. - Inverse functions - Combining graph transformations - Solving modulus problems	- Simplify rational expressions, including by factorising and cancelling, and algebraic division (by linear expressions only). - Explore the modulus function and use it to sketch graphs and solve equations - Calculate composite functions, inverse functions and their graphs. - Identify the domain and range of functions and their inverse. - Sketch combinations of transformations of graphs. - Decompose rational functions into partial fractions	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ4 (March)

		- Apply knowledge of partial fractions to series expansions. - Use functions in modelling, including consideration of limitations and refinements of the models	
Trigonometry 2	- Radians - Small angle approximations - Reciprocal trig functions and their graphs - Inverse trig functions and their graphs - Trigonometric identities	- Convert between degrees and radians and apply this to trigonometric graphs and their transformations - Use exact values of angles measured in radians - Find the arc length using radians - Find area of sectors and segments using radians - Explore and use the standard small angle approximations of sine, cosine and tangent - Solve trigonometric equations in radians - Define secant, cosecant and cotangent and of arcsin, arccos and arctan, and their relationships to sine, cosine and tangent; sketch the graphs and identify their ranges and domains. - Prove the identities and - Use and to solve problems. - Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent - Derive and use the addition and double angle formulae - Use knowledge of addition formulae to derive expressions for $a \cos \theta+b \sin \theta$ in the equivalent forms of $r \cos (\theta \pm \alpha)$ or $r \sin$ ($\theta \pm \alpha$) - Construct proofs involving trigonometric functions and identities. - Use trigonometric functions to solve problems in context, using degrees or radians.	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ3 (November)

Coordinate geometry in the (x, y) plane	- Parametric Equations - Modelling with parametric equations	- Convert between Cartesian and parametric forms - Sketch curves given in parametric form - Find points of intersection in parametric form - Use parametric equations in modelling in a variety of contexts.	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13) - CQ4 (March)
Modelling in Mechanics	- Constructing a model - Modelling assumptions - Quantities and units - Working with vectors	- Explore the concept of mathematical modelling as applied to Mechanics. - Identify and apply some of the common assumptions used in mechanics models. - Use fundamental quantities and units in the S.I. system: length, time, mass. - Convert quantities into $\mathrm{S} . \mathrm{I}$ units e.g. km / h to m / s - Define and use velocity, acceleration, force, weight, moment - Identify scalar and vector quantities	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y13)
Kinematics	- Displacement - Time Graphs - Velocity - Time Graphs - Constant Acceleration Formulae - Horizontal motion - Vertical motion under gravity - Variable acceleration as a function of time - Using calculus to solve kinematics problems and problems involving maxima and minima - Vectors in kinematics - Projectiles - Horizontal projections - Horizontal and vertical components - Projection at any angle - Projectile motion formulae	- Use the language of kinematics - Draw and interpret displacement-time graphs - Draw and interpret velocity-time graphs - Derive the constant acceleration formulae and use them to solve problems for horizontal motion. - Use the constant acceleration formulae to solve problems involving vertical motion under gravity. - Use displacement, velocity and acceleration as functions of time. - Use differentiation and integration to solve kinematics problems. - Use calculus to derive the constant acceleration formulae, making links with earlier work. - Extend earlier work to 2-D using vectors.	- Controlled homework - Baseline 4 mock exams (January of Y13) - Baseline 5 mock exams (PostEaster of Y 13)

		- Work with vectors for displacement, velocity and acceleration when using the vector equations of motion. - Use calculus with harder functions of time involving variable acceleration. - Differentiate and Integrate vectors with respect to time. - Model motion under gravity for an object projected horizontally - Resolve velocity into components - Solve problems involving particles projected at an angle - Derive and use the formulae for time of flight, range and greatest height, and the equation of the path of a projectile.	
Differentiation 2	- Know how to differentiate trigonometric functions exponentials and logarithms using chain rule, quotient rule and product rule parametric equations implicit functions - Use the second derivative to describe the behaviour of a functions - Solve problems involving connected rates of change - Construct simple differential equations	- Use the second derivative as the rate of change of gradient, connecting to convex and concave sections of curves and points of inflection. - Differentiate $e^{k x}$ and a^{x}, sinkx, coskx, tankx and related sums, differences and constant multiples. Prove the derivative of $\ln x$ is $1 / x$. - Differentiate $\sin x$ and cosx from first principles - Differentiate using the product rule, the quotient rule and the chain rule, including problems involving connected rates of change and inverse functions. - Differentiate simple functions and relations defined implicitly or parametrically, for first derivative only. - Find equations of tangents and normals to curves given parametrically or implicitly. - Construct simple differential equations in pure mathematics and in context	- Controlled homework - Baseline 5 mock exams (PostEaster of Y13)

Numerical Methods	- Locating roots - Iteration - The Newton-Raphson Method - Applications to modelling	- Locate roots of $f(x)=0$ by considering changes of sign of $f(x)$ in an interval of x on which $f(x)$ is sufficiently well behaved. - Explore and use the limitations of change of sign method. - Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. - Use iteration to find a root and show understanding of the convergence in geometrical terms by drawing cobweb and staircase diagrams. - Solve equations using the Newton-Raphson method and other recurrence relations of the form $x_{n+1}=\mathrm{g}\left(x_{n}\right)$ and explain how such methods can fail. - Use numerical methods to solve problems in context.	- Controlled homework - Baseline 5 mock exams (PostEaster of Y13)
Integration 2	- Integrating standard functions - Integrating f(ax +b$)$ - Using trigonometric identities - Reverse chain rule - Integration by substitution - Integration by parts - Partial fractions - Finding areas - The trapezium rule - Solving differential equations - Modelling with differential equations - Integration as a limit of a sum	- Integrate standard mathematical functions including trigonometric and exponential functions and use the reverse of the chain rule to integrate functions of the form $\mathrm{f}(\mathrm{ax}+\mathrm{b})$. - Use trigonometric identities in integration - Use the reverse chain rule to integrate more complicate functions - Integrate functions by making a substitution, using integration by parts, and using partial fractions. - Use integration to find the area under a curve. - Use the trapezium rule to approximate the area under a curve, identifying limitations of this method. - Solve simple differential equations and model real-life situations with differential equations.	- Controlled homework - Baseline 5 mock exams (PostEaster of Y13)

Forces and Newton's law	- Forces and motion - Newton's $1^{\text {st }}$ Law - Force diagrams - Forces as vectors - Forces and acceleration (Newton's $2^{\text {nd }}$ Law) - Motion in 2 dimensions - Connected particles and Newton's $3^{\text {rd }}$ Law - Pulleys - Forces and friction - Resolving forces - Inclined planes - Friction - Applications of forces - Static particles - Modelling with statics - Friction and static particles - Static rigid bodies - Dynamics and inclined planes - Connected particles 2	- Draw force diagrams and calculate resultant forces - Explore and use Newton's First Law - Calculate resultant forces by adding vectors - Explore and use Newton's Second Law, - $\mathrm{F}=\mathrm{ma}$ - Apply Newton's Second Law to vector forces and acceleration - Explore and use Newton's Third Law - Solve problems involving connected particles - Resolve forces into components - Use the triangle law to find a result force - Understand friction and the coefficient of friction. - Use $F \leq \mu R$ - Solve problems involving smooth or rough inclined planes - Find an unknown force when a system is in equilibrium - Solve statics problems involving weight, tension and pulleys - Solve problems involving limiting equilibrium - Solve problems involving motion on rough or smooth inclined planes - Solve problems involving connected particles that require the resolution of forces.	- Controlled homework - Baseline 5 mock exams (PostEaster of Y 13)
Moments	- Moments and resulting moments - Equilibrium - Centres of mass - Tilting - Moments in 2D	- Calculate the turning effect of a force applied to a rigid body. - Calculate the resultant moment of a set of forces acting on a rigid body - Solve problems involving uniform rods in equilibrium Solve problems involving non-uniform rods	- Controlled homework - Baseline 5 mock exams (PostEaster of Y13)

		\bulletSolve problems involving rods on the point of tilting. \bullet Solve problems involving moments of objects in 2D, including ladder and hinge problems.	

